GBDT 算法

Python010

GBDT 算法,第1张

GBDT (Gradient Boosting Decision Tree) 梯度提升迭代决策树。GBDT 也是 Boosting 算法的一种,但是和 AdaBoost 算法不同(AdaBoost 算法上一篇文章已经介绍);区别如下:AdaBoost 算法是利用前一轮的弱学习器的误差来更新样本权重值,然后一轮一轮的迭代;GBDT 也是迭代,但是 GBDT 要求弱学习器必须是 CART 模型,而且 GBDT 在模型训练的时候,是要求模型预测的样本损失尽可能的小。

GBDT 直观理解:每一轮预测和实际值有残差,下一轮根据残差再进行预测,最后将所有预测相加,就是结果。

GBDT 模型可以表示为决策树的加法模型:

其中,T(x;θm)表示决策树;θm 为决策树的参数; M为树的个数。

采用前向分布算法, 首先确定初始提升树 fo(x) = 0, 第 m 步的模型是:

通过经验风险极小化确定下一棵树的参数:(其实就是让残差尽可能的小找到最优划分点)

这里的 L() 是损失函数,回归算法选择的损失函数一般是均方差(最小二乘)或者绝对值误差而在分类算法中一般的损失函数选择对数函数来表示

GBDT 既可以做回归也可以做分类,下面先描述一下做回归的算法流程:

已知一个训练数据集 T = {(x1,y1),(x2,y2),...,(xn,yn)}, 如果将训练集分为不同的区域 R1,R2,...,Rn,然后可以确定每个区域输出的常识 c,c 的计算是将每个区域的 y 值相加再除以 y 的个数,其实就是求一个平均值。树可以表示为:

然后通过下图方式来确定具体分割点:

我将李航的统计学方法里面的例子粘出来,就知道提升树是如何计算的了:

以上就是 GBDT 选择分割点的过程, 如果特征有多个的话也是一样的道理,选择特征和特征值使得误差最小的点,作为分割点。所以其实 GBDT 也可以用作特征选择,通过GBDT 可以将重要的特征选择出来,当特征非常多的时候可以用来做降维。然后再融合类似逻辑回归这样的模型再进行训练。

欢迎大家关注,vx公众号同名

GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在被提出之初就和SVM一起被认为是泛化能力较强的算法。

GBDT中的树是回归树(不是分类树),GBDT用来做回归预测,调整后也可以用于分类。

GBDT主要由三个概念组成:Regression Decistion Tree(即DT),Gradient Boosting(即GB),Shrinkage (算法的一个重要演进分枝,目前大部分源码都按该版本实现)。搞定这三个概念后就能明白GBDT是如何工作的。

提起决策树(DT, Decision Tree) 绝大部分人首先想到的就是C4.5分类决策树。但如果一开始就把GBDT中的树想成分类树,那就错了。千万不要以为GBDT是很多棵分类树。决策树分为两大类,回归树和分类树。前者用于预测实数值,如明天的温度、用户的年龄、网页的相关程度;后者用于分类标签值,如晴天/阴天/雾/雨、用户性别、网页是否是垃圾页面。这里要强调的是,前者的结果加减是有意义的,如10岁+5岁-3岁=12岁,后者则无意义,如男+男+女=到底是男是女?GBDT的核心在于累加所有树的结果作为最终结果,就像前面对年龄的累加(-3是加负3),而分类树的结果显然是没办法累加的,所以 GBDT中的树都是回归树,不是分类树 ,这点对理解GBDT相当重要(尽管GBDT调整后也可用于分类但不代表GBDT的树是分类树)。

回归树总体流程类似于分类树,区别在于,回归树的每一个节点都会得一个预测值,以年龄为例,该预测值等于属于这个节点的所有人年龄的平均值。分枝时穷举每一个feature的每个阈值找最好的分割点,但衡量最好的标准不再是最大熵,而是最小化平方误差。也就是被预测出错的人数越多,错的越离谱,平方误差就越大,通过最小化平方误差能够找到最可靠的分枝依据。分枝直到每个叶子节点上人的年龄都唯一或者达到预设的终止条件(如叶子个数上限), 若最终叶子节点上人的年龄不唯一,则以该节点上所有人的平均年龄做为该叶子节点的预测年龄。

回归树算法如下图(截图来自《统计学习方法》5.5.1 CART生成):

梯度提升(Gradient boosting)是一种用于回归、分类和排序任务的机器学习技术 [1] ,属于Boosting算法族的一部分。Boosting是一族可将弱学习器提升为强学习器的算法,属于集成学习(ensemble learning)的范畴。Boosting方法基于这样一种思想:对于一个复杂任务来说,将多个专家的判断进行适当的综合所得出的判断,要比其中任何一个专家单独的判断要好。通俗地说,就是“三个臭皮匠顶个诸葛亮”的道理。梯度提升同其他boosting方法一样,通过集成(ensemble)多个弱学习器,通常是决策树,来构建最终的预测模型。

Boosting、bagging和stacking是集成学习的三种主要方法。不同于bagging方法,boosting方法通过分步迭代(stage-wise)的方式来构建模型,在迭代的每一步构建的弱学习器都是为了弥补已有模型的不足。Boosting族算法的著名代表是AdaBoost,AdaBoost算法通过给已有模型预测错误的样本更高的权重,使得先前的学习器做错的训练样本在后续受到更多的关注的方式来弥补已有模型的不足。与AdaBoost算法不同,梯度提升方法在迭代的每一步构建一个能够沿着梯度最陡的方向降低损失(steepest-descent)的学习器来弥补已有模型的不足。经典的AdaBoost算法只能处理采用指数损失函数的二分类学习任务 [2] ,而梯度提升方法通过设置不同的可微损失函数可以处理各类学习任务(多分类、回归、Ranking等),应用范围大大扩展。另一方面,AdaBoost算法对异常点(outlier)比较敏感,而梯度提升算法通过引入bagging思想、加入正则项等方法能够有效地抵御训练数据中的噪音,具有更好的健壮性。这也是为什么梯度提升算法(尤其是采用决策树作为弱学习器的GBDT算法)如此流行的原因,

提升树是迭代多棵回归树来共同决策。当采用平方误差损失函数时,每一棵回归树学习的是之前所有树的结论和残差,拟合得到一个当前的残差回归树,残差的意义如公式:残差 = 真实值 - 预测值 。提升树即是整个迭代过程生成的回归树的累加。 GBDT的核心就在于,每一棵树学的是之前所有树结论和的残差,这个残差就是一个加预测值后能得真实值的累加量。

提升树利用 加法模型和前向分步算法 实现学习的优化过程。当损失函数时平方损失和指数损失函数时,每一步的优化很简单,如平方损失函数学习残差回归树。

提升方法其实是一个比adaboost概念更大的算法,因为adaboost可以表示为boosting的前向分布算法(Forward stagewise additive modeling)的一个特例,boosting最终可以表示为:

其中的w是权重,Φ是弱分类器(回归器)的集合,其实就是一个加法模型(即基函数的线性组合)

前向分布算法 实际上是一个贪心的算法,也就是在每一步求解弱分类器Φ(m)和其参数w(m)的时候不去修改之前已经求好的分类器和参数:

OK,这也就是提升方法(之前向分布算法)的大致结构了,可以看到其中存在变数的部分其实就是极小化损失函数 这关键的一步了,如何选择损失函数决定了算法的最终效果(名字)……这一步你可以看出算法的“趋势”,以后再单独把“趋势”拿出来说吧,因为我感觉理解算法的关键之一就是理解算法公式的“趋势”

不同的损失函数和极小化损失函数方法决定了boosting的最终效果,我们现在来说几个常见的boosting:

广义上来讲,所谓的Gradient Boosting 其实就是在更新的时候选择梯度下降的方向来保证最后的结果最好,一些书上讲的“残差” 方法其实就是L2Boosting吧,因为它所定义的残差其实就是L2Boosting的Derivative,接下来我们着重讲一下弱回归器(不知道叫啥了,自己编的)是决策树的情况,也就是GBDT。

GBDT算法可以看成是由K棵树组成的加法模型:

解这一优化问题,可以用前向分布算法(forward stagewise algorithm)。因为学习的是加法模型,如果能够从前往后,每一步只学习一个基函数及其系数(结构),逐步逼近优化目标函数,那么就可以简化复杂度。这一学习过程称之为Boosting。具体地,我们从一个常量预测开始,每次学习一个新的函数,过程如下:

举个例子,参考自一篇博客, 该博客举出的例子较直观地展现出多棵决策树线性求和过程以及残差的意义。

还是年龄预测,简单起见训练集只有4个人,A,B,C,D,他们的年龄分别是14,16,24,26。其中A、B分别是高一和高三学生;C,D分别是应届毕业生和工作两年的员工。如果是用一棵传统的回归决策树来训练,会得到如下图1所示结果:

现在我们使用GBDT来做这件事,由于数据太少,我们限定叶子节点做多有两个,即每棵树都只有一个分枝,并且限定只学两棵树。我们会得到如下图2所示结果:

在第一棵树分枝和图1一样,由于A,B年龄较为相近,C,D年龄较为相近,他们被分为两拨,每拨用平均年龄作为预测值。此时计算残差 (残差的意思就是: A的预测值 + A的残差 = A的实际值) ,所以A的残差就是16-15=1(注意,A的预测值是指前面所有树累加的和,这里前面只有一棵树所以直接是15,如果还有树则需要都累加起来作为A的预测值)。进而得到A,B,C,D的残差分别为-1,1,-1,1。然后我们拿残差替代A,B,C,D的原值,到第二棵树去学习,如果我们的预测值和它们的残差相等,则只需把第二棵树的结论累加到第一棵树上就能得到真实年龄了。这里的数据显然是我可以做的,第二棵树只有两个值1和-1,直接分成两个节点。此时所有人的残差都是0,即每个人都得到了真实的预测值。

换句话说,现在A,B,C,D的预测值都和真实年龄一致了。Perfect!:

A: 14岁高一学生,购物较少,经常问学长问题;预测年龄A = 15 – 1 = 14

B: 16岁高三学生;购物较少,经常被学弟问问题;预测年龄B = 15 + 1 = 16

C: 24岁应届毕业生;购物较多,经常问师兄问题;预测年龄C = 25 – 1 = 24

D: 26岁工作两年员工;购物较多,经常被师弟问问题;预测年龄D = 25 + 1 = 26

那么哪里体现了Gradient呢?其实回到第一棵树结束时想一想,无论此时的cost function是什么,是均方差还是均差,只要它以误差作为衡量标准,残差向量(-1, 1, -1, 1)都是它的全局最优方向,这就是Gradient。

讲到这里我们已经把GBDT最核心的概念、运算过程讲完了!没错就是这么简单。

该例子很直观的能看到,预测值等于所有树值得累加,如A的预测值 = 树1左节点 值 15 + 树2左节点 -1 = 14。

因此,给定当前模型 fm-1(x),只需要简单的拟合当前模型的残差。现将回归问题的提升树算法叙述如下:

答案是过拟合。过拟合是指为了让训练集精度更高,学到了很多”仅在训练集上成立的规律“,导致换一个数据集当前规律就不适用了。其实只要允许一棵树的叶子节点足够多,训练集总是能训练到100%准确率的(大不了最后一个叶子上只有一个instance)。在训练精度和实际精度(或测试精度)之间,后者才是我们想要真正得到的。

我们发现图1为了达到100%精度使用了3个feature(上网时长、时段、网购金额),其中分枝“上网时长>1.1h” 很显然已经过拟合了,这个数据集上A,B也许恰好A每天上网1.09h, B上网1.05小时,但用上网时间是不是>1.1小时来判断所有人的年龄很显然是有悖常识的;

相对来说图2的boosting虽然用了两棵树 ,但其实只用了2个feature就搞定了,后一个feature是问答比例,显然图2的依据更靠谱。(当然,这里是LZ故意做的数据,所以才能靠谱得如此狗血。实际中靠谱不靠谱总是相对的) Boosting的最大好处在于,每一步的残差计算其实变相地增大了分错instance的权重,而已经分对的instance则都趋向于0。这样后面的树就能越来越专注那些前面被分错的instance。就像我们做互联网,总是先解决60%用户的需求凑合着,再解决35%用户的需求,最后才关注那5%人的需求,这样就能逐渐把产品做好,因为不同类型用户需求可能完全不同,需要分别独立分析。如果反过来做,或者刚上来就一定要做到尽善尽美,往往最终会竹篮打水一场空。

Shrinkage(缩减)的思想认为,每次走一小步逐渐逼近结果的效果,要比每次迈一大步很快逼近结果的方式更容易避免过拟合。即它不完全信任每一个棵残差树,它认为每棵树只学到了真理的一小部分,累加的时候只累加一小部分,通过多学几棵树弥补不足。用方程来看更清晰,即

没用Shrinkage时:(yi表示第i棵树上y的预测值, y(1~i)表示前i棵树y的综合预测值)

y(i+1) = 残差(y1~yi), 其中: 残差(y1~yi) = y真实值 - y(1 ~ i)

y(1 ~ i) = SUM(y1, ..., yi)

Shrinkage不改变第一个方程,只把第二个方程改为:

y(1 ~ i) = y(1 ~ i-1) + step * yi

即Shrinkage仍然以残差作为学习目标,但对于残差学习出来的结果,只累加一小部分(step 残差)逐步逼近目标,step一般都比较小,如0.01~0.001(注意该step非gradient的step),导致各个树的残差是渐变的而不是陡变的。直觉上这也很好理解,不像直接用残差一步修复误差,而是只修复一点点,其实就是把大步切成了很多小步。 本质上,Shrinkage为每棵树设置了一个weight,累加时要乘以这个weight,但和Gradient并没有关系 *。 这个weight就是step。就像Adaboost一样,Shrinkage能减少过拟合发生也是经验证明的,目前还没有看到从理论的证明。

该版本GBDT几乎可用于所有回归问题(线性/非线性),相对logistic regression仅能用于线性回归,GBDT的适用面非常广。亦可用于二分类问题(设定阈值,大于阈值为正例,反之为负例)。

参考资料:

http://blog.csdn.net/w28971023/article/details/8240756

http://blog.csdn.net/dark_scope/article/details/24863289

https://www.jianshu.com/p/005a4e6ac775

https://www.zybuluo.com/yxd/note/611571