如何用Python对数据进行差分

Python013

如何用Python对数据进行差分,第1张

处理过与时间有关的数据的人都知道,差分变化经常用来使得结果更加直观。在这篇文章里将会教你如何用Python来实现这一目的,读完这篇文章,你将会掌握以下技能:

1、知道什么是差分变换以及滞后差分和差分阶数的设置

2、如何手动计算差分

3、怎样使用Pandas内置的差分函数

所以,让我们赶紧开始吧!

为什么要对时间序列数据进行差分?

首先来看下为什么要对数据进行差分变化,差分变化可以消除数据对时间的依赖性,也就是降低时间对数据的影响,这些影响通常包括数据的变化趋势以及数据周期性变化的规律。进行差分操作时,一般用现在的观测值减去上个时刻的值就得到差分结果,就是这么简单,按照这种定义可以计算一系列的差分变换。

滞后差分

连续观测值之间的差分变换叫做一阶滞后差分。滞后差分的步长需要根据数据的时间结构做调整,例如对于周期性变化的数据,这个时间步长就是数据变化的周期。

差分阶数

在进行一次差分之后,时间项的作用并没有完全去掉,将会继续对差分结果进行差分变化,直到完全消除时间项的影响因素为止,这个过程中进行的差分操作次数就称为差分阶数。

洗发水销售数据

这份数据是三年来每月洗发水的销售情况,总共有36个数据记录,原始数据来自Makridakis, Wheelwright和 Hyndman (1998).,可以从下面的地址下到数据:

下面的代码将会导入数据并将结果画成折线图,如下所示:

手动差分

在这一部分中,我们将会自定义一个函数来实现差分变换,这个函数将会对提供的数据进行遍历并根据指定的时间间隔进行差分变换。具体代码如下:

从上面的代码中可以看到该函数将会根据指定的时间间隔来对数据进行变换,一般来说,通常会计算间隔一个数据的差分,这样的结果比较可靠。当然,我们也可以将上面的函数进行一定的改进,加入差分阶数的指定。

下面将这函数应用到上面洗发水销售的数据中去,运行之后绘出下面的图,具体如下:

自动差分

Pandas库里提供了一个函数可以自动计算数据的差分,这个函数是diff(),输入的数据是“series'或”DataFrame'类型的,像前面自定义函数那样,我们也可以指定差分的时间间隔,不过在这里这个参数叫做周期。

下面的例子是用Pandas内置函数来计算差分的,数据类型是series的,使用Pandas内置函数的好处是代码工作量减少了不少,而且绘出的图中包含更详细的信息,具体效果如下:

总结

读完本文想必你已经学会用python来实现对数据的差分了,尤其是对差分的概念,手动差分,以及使用Pandas内置函数进行差分都有所了解了。如果有什么好的想法欢迎在评论栏里留下。

本文归纳常见常微分方程的解析解解法以及基于Python的微分方程数值解算例实现。

考虑常微分方程的解析解法,我们一般可以将其归纳为如下几类:

这类微分方程可以变形成如下形式:

两边同时积分即可解出函数,难点主要在于不定积分,是最简单的微分方程。

某些方程看似不可分离变量,但是经过换元之后,其实还是可分离变量的,不要被这种方程迷惑。

形如

的方程叫做一阶线性微分方程,若 为0,则方程齐次,否则称为非齐次。

解法: (直接套公式)

伯努利方程

形如

的方程称为伯努利方程,这种方程可以通过以下步骤化为一阶线性微分方程:

令 , 方程两边同时乘以 ,得到

即 .

这就将伯努利方程归结为可以套公式的一阶线性微分方程。

形如

的方程称为二阶常系数微分方程,若 ,则方程称为齐次的,反之称为非齐次的。以下默认方程是非齐次的。

求解此类方程分两步:

原方程的解 = 齐次通解 + 非齐次特解

首先假设 .用特征方程法,写出对应的特征方程并且求解:

解的情况分为以下三种:

情况一:方程有两个不同的实数解

假设两个实数解分别是 , 此时方程的通解是

情况二:方程有一个二重解

假设该解等于 ,此时方程的通解是

情况三:方程有一对共轭复解

假设这对解是 , 此时方程的通解是

对于和特征根的情况,对特解的情况做如下归纳:

形如

的方程叫做高阶常系数微分方程,若 ,则方程是齐次的,否则是非齐次的。下面默认方程是非齐次的。

求解此类方程分两步:

原方程的解 = 齐次通解 + 非齐次特解

考虑带有第三类边界条件的二阶常系数微分方程边值问题

问题一:两点边值问题的解析解

由于此方程是非齐次的,故 求解此类方程分两步:

原方程的解 = 齐次通解 + 非齐次特解

首先假设 . 用特征方程法,写出对应的特征方程

求解得到两个不同的实数特征根: .

此时方程的齐次通解是

由于 . 所以非齐次特解形式为

将上式代入控制方程有

求解得: , 即非齐次特解为 .

原方程的解 = 齐次通解 + 非齐次特解

于是,原方程的全解为

因为该问题给出的是第三类边界条件,故需要求解的导函数

且有

将以上各式代入边界条件

解此方程组可得: .

综上所述,原两点边值问题的解为

对一般的二阶微分方程边值问题

假定其解存在唯一,

为求解的近似值, 类似于前面的做法,

考虑带有第三类边界条件的二阶常系数微分方程边值问题

问题二:有限差分方法算出其数值解及误差

对于 原问题 ,取步长 h=0.2 ,用 有限差分 求其 近似解 ,并将结果与 精确解y(x)=-x-1 进行比较.

因为

先以将区间划分为5份为例,求出数值解

结果:

是不是解出数值解就完事了呢?当然不是。我们可以将问题的差分格式解与问题的真解进行比较,以得到解的可靠性。通过数学计算我们得到问题的真解为 ,现用范数来衡量误差的大小:

结果:

接下来绘图比较时数值解与真解的差距:

结果:

将区间划分为份, 即时.

结果:

绘图比较时数值解与真解的差距:

最后,我们还可以从数学的角度分析所采用的差分格式的一些性质。因为差分格式的误差为 , 所以理论上来说网格每加密一倍,与真解的误差大致会缩小到原来的 . 下讨论网格加密时的变化:

结果: