面试官常问十大经典算法排序(用Python实现)

Python011

面试官常问十大经典算法排序(用Python实现),第1张

算法是一种与语言无关的东西,更确切地说就算解决问题的思路,就是一个通用的思想的问题。代码本身不重要,算法思想才是重中之重

我们在面试的时候总会被问到一下算法,虽然算法是一些基础知识,但是难起来也会让人非常头疼。

排序算法应该算是一些简单且基础的算法,但是我们可以从简单的算法排序锻炼我们的算法思维。这里我就介绍经典十大算法用python是怎么实现的。

十大经典算法可以分为两大类:

比较排序: 通过对数组中的元素进行比较来实现排序。

非比较排序: 不通过比较来决定元素间的相对次序。

算法复杂度

冒泡排序比较简单,几乎所有语言算法都会涉及的冒泡算法。

基本原理是两两比较待排序数据的大小 ,当两个数据的次序不满足顺序条件时即进行交换,反之,则保持不变。

每次选择一个最小(大)的,直到所有元素都被输出。

将第一个元素逐个插入到前面的有序数中,直到插完所有元素为止。

从大范围到小范围进行比较-交换,是插入排序的一种,它是针对直接插入排序算法的改进。先对数据进行预处理,使其基本有序,然后再用直接插入的排序算法排序。

该算法是采用 分治法 对集合进行排序。

把长度为n的输入序列分成两个长度为n/2的子序列,对这两个子序列分别采用归并排序,最终合并成序列。

选取一个基准值,小数在左大数在在右。

利用堆这种数据结构所设计的一种排序算法。

堆是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。利用最大堆和最小堆的特性。

采用字典计数-还原的方法,找出待排序的数组中最大和最小的元素,统计数组中每个值为i的元素出现的次数,对所有的计数累加,将每个元素放在新数组依次排序。

设置一个定量的数组当作空桶;遍历输入数据,并且把数据一个一个放到对应的桶里去;对每个不是空的桶进行排序;从不是空的桶里把排好序的数据拼接起来。

元素分布在桶中:

然后,元素在每个桶中排序:

取得数组中的最大数,并取得位数;从最低位开始取每个位组成新的数组;然后进行计数排序。

上面就是我整理的十大排序算法,希望能帮助大家在算法方面知识的提升。看懂之后可以去试着自己到电脑上运行一遍。最后说一下每个排序是没有调用数据的,大家记得实操的时候要调用。

参考地址:https://www.runoob.com/w3cnote/ten-sorting-algorithm.html

排序算法是《数据结构与算法》中最基本的算法之一。

排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。用一张图概括:

点击以下图片查看大图:

关于时间复杂度

平方阶 (O(n2)) 排序 各类简单排序:直接插入、直接选择和冒泡排序。

线性对数阶 (O(nlog2n)) 排序 快速排序、堆排序和归并排序;

O(n1+§)) 排序,§ 是介于 0 和 1 之间的常数。 希尔排序

线性阶 (O(n)) 排序 基数排序,此外还有桶、箱排序。

关于稳定性

稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序。

不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序。

名词解释:

n:数据规模 k:"桶"的个数 In-place:占用常数内存,不占用额外内存 Out-place:占用额外内存 稳定性:排序后 2 个相等键值的顺序和排序之前它们的顺序相同

包含以下内容:

1、冒泡排序 2、选择排序 3、插入排序 4、希尔排序 5、归并排序 6、快速排序 7、堆排序8、计数排序 9、桶排序 10、基数排序

排序算法包含的相关内容具体如下:

冒泡排序算法

冒泡排序(Bubble Sort)也是一种简单直观的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢"浮"到数列的顶端。

选择排序算法

选择排序是一种简单直观的排序算法,无论什么数据进去都是 O(n?) 的时间复杂度。所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间。

插入排序算法

插入排序的代码实现虽然没有冒泡排序和选择排序那么简单粗暴,但它的原理应该是最容易理解的了,因为只要打过扑克牌的人都应该能够秒懂。插入排序是一种最简单直观的排序算法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

希尔排序算法

希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。但希尔排序是非稳定排序算法。

归并排序算法

归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

快速排序算法

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。事实上,快速排序通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

堆排序算法

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以说是一种利用堆的概念来排序的选择排序。

计数排序算法

计数排序的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

桶排序算法

桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。

基数排序算法

基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。

动态规划算法中是将复杂问题递归分解为子问题,通过解决这些子问题来解决复杂问题。与递归算法相比,动态编程减少了堆栈的使用,避免了重复的计算,效率得到显著提升。

先来看一个简单的例子,斐波那契数列.

斐波那契数列的定义如下。

斐波那契数列可以很容易地用递归算法实现:

上述代码,随着n的增加,计算量呈指数级增长,算法的时间复杂度是 。

采用动态规划算法,通过自下而上的计算数列的值,可以使算法复杂度减小到 ,代码如下。

下面我们再看一个复杂一些的例子。

这是小学奥数常见的硬币问题: 已知有1分,2分,5分三种硬币数量不限,用这些硬币凑成为n分钱,那么一共有多少种组合方法。

我们将硬币的种类用列表 coins 定义;

将问题定义为一个二维数组 dp,dp[amt][j] 是使用 coins 中前 j+1 种硬币( coins[0:j+1] )凑成总价amt的组合数。

例如: coins = [1,2,5]

dp[5][1] 就是使用前两种硬币 [1,2] 凑成总和为5的组合数。

对于所有的 dp[0][j] 来说,凑成总价为0的情况只有一种,就是所有的硬币数量都为0。所以对于在有效范围内任意的j,都有 dp[0][j] 为1。

对于 dp[amt][j] 的计算,也就是使用 coins[0:j+1] 硬币总价amt的组合数,包含两种情况计算:

1.当使用第j个硬币时,有 dp[amt-coins[j]][j] 种情况,即amt减去第j个硬币币值,使用前j+1种硬币的组合数;

2.当不使用第j个硬币时,有 dp[amt][j-1] 种情况,即使用前j种硬币凑成amt的组合数;

所以: dp[amt][j] = dp[amt - coins[j]][j]+dp[amt][j-1]

我们最终得到的结果是:dp[amount][-1]

上述分析省略了一些边界情况。

有了上述的分析,代码实现就比较简单了。

动态规划算法代码简洁,执行效率高。但是与递归算法相比,需要仔细考虑如何分解问题,动态规划代码与递归调用相比,较难理解。

我把递归算法实现的代码也附在下面。有兴趣的朋友可以比较一下两种算法的时间复杂度有多大差别。

上述代码在Python 3.7运行通过。