R语言数据分析实例一:离职率分析与建模预测

Python014

R语言数据分析实例一:离职率分析与建模预测,第1张

本文分析利用IBM离职员工数据进行分析。在对离职率的影响因素进行观察的基础至上,建立模型并预测哪些员工更易离职。

一般而言,数据分析分为三个步骤:数据收集与清洗、探索性分析和建模预测。本文的数据集是IBM用于研究员工预测的 模拟数据 ,数据十分完整,无需清洗。因此,本文主要分为三个部分:

通过对IBM离职员工数据实践,本文希望发掘出影响员工流失的因素,并对利用R语言进行数据分析过程进行复习,深化对数据分析工作意义的理解。

IBM离职员工数据集共有35个变量,1470个观测个案。部分需要重点关注的变量如下:

上述变量可以分为三个部分:

载入分析包和数据集

通过描述性统计可以初步观测到:

分析结果:

基于对数据的探索性分析,员工离职有多方面因素的影响,主要有:

1.工作与生活的不平衡——加班、离家远和出差等;

2.工作投入如果不能获得相匹配的回报,员工更倾向离职;

3.优先股认购等福利是员工较为关注的回报形式;

4.年龄、任职过的公司数量的因素也会影响员工离职率;

删除需要的变量:EmployeeCount, EmployeeNumber, Over18, StandardHours

变量重新编码:JobRole, EducationFiled

分析结果表明:

随机森林所得的AUC值为0.5612,小于决策树模型。

GBM模型得到的AUC值为0.5915

对于对于随机森林和GBM的方法,AUC值小于单一决策树模型的AUC值的情况较少见,这显然说明单一的树拟合得更好或者更稳定的情况。(一般需要得到AUC值大于0.75的模型)

当结果分类变量之间的比列是1:10或者更高的时候,通常需要考虑优化模型。本例中,离职变量的比列是1:5左右,但仍然可能是合理的,因为在决策树中看到的主要问题是预测那些实际离开的人(敏感度)。

加权旨在降低少数群体中的错误,这里是离职群体。

向上采样(up-sampling)指从多数类中随机删除实例。

向下采样(down-sampling)指从少数类中复制实例。

分析结果表明:

加权调整的模型表现最好,相比较于单纯的随机森林和GBM模型,AUC值从0.5612上升至0.7803,灵敏度也达到了0.7276。据此,后续将采用加权调整后的模型进行预测。

已经训练出一个表现较好的模型。将其应用于实践时,需要注意以下几个方面:

可以观察到影响员工流失的前5个因素是:

因此,在实践中就需要注意:

本例中对工作投入高、收入低的员工进行预测。

本例分析仍有需要足够完善的地方,还可以往更多更有意义的地方探索:

logit=glm(y~x1+x2,data=data,family=binomial(link='logit')) glm表示广义线性回归,data表示y,x1,x2所在的数据集,family中的link用来选择回归类型,logit表示选择logistic回归

这上网搜应该搜的到吧,比如这篇文章"

股票价格行为关于几何布朗运动的模拟--基于中国上证综指的实证研究

",照着几何布朗运动的公式直接写代码应该就行了吧,代码逻辑都很清晰。

下面是照着这片文章模拟一次的代码,模拟多次的话,外面再套个循环应该就行了。然后再根据均方误差(一般用这个做准则的多)来挑最好的。

话说你的数据最好别是分钟或者3s切片数据,不然R这速度和内存够呛。

N <- 2000 #模拟的样本数

S0 <- 2000 #初始值

mu <- 0.051686/100

sigma <- 1.2077/100

St <- rep(0,N)

epsion <- rnorm(N,0,1) #正态分布随机数

for(i in 1:N) {

if(i == 1) {

delta_St <- mu * S0 + sigma * S0 * epsion[i]

St[i] <- S0 + delta_St

}else {

delta_St <- mu * St[i-1] + sigma * St[i-1] * epsion[i]

St[i] <- St[i-1] + delta_St

}

}

Final_St <- c(S0,St) #最终结果

plot(Final_St,type = "l")