基于R语言的梯度推进算法介绍

Python015

基于R语言的梯度推进算法介绍,第1张

基于R语言的梯度推进算法介绍

通常来说,我们可以从两个方面来提高一个预测模型的准确性:完善特征工程(feature engineering)或是直接使用Boosting算法。通过大量数据科学竞赛的试炼,我们可以发现人们更钟爱于Boosting算法,这是因为和其他方法相比,它在产生类似的结果时往往更加节约时间。

Boosting算法有很多种,比如梯度推进(Gradient Boosting)、XGBoost、AdaBoost、Gentle Boost等等。每一种算法都有自己不同的理论基础,通过对它们进行运用,算法之间细微的差别也能够被我们所察觉。如果你是一个新手,那么太好了,从现在开始,你可以用大约一周的时间来了解和学习这些知识。

在本文中,笔者将会向你介绍梯度推进算法的基本概念及其复杂性,此外,文中还分享了一个关于如何在R语言中对该算法进行实现的例子。

快问快答

每当谈及Boosting算法,下列两个概念便会频繁的出现:Bagging和Boosting。那么,这两个概念是什么,它们之间究竟有什么区别呢?让我们快速简要地在这里解释一下:

Bagging:对数据进行随机抽样、建立学习算法并且通过简单平均来得到最终概率结论的一种方法。

Boosting:与Bagging类似,但在样本选择方面显得更为聪明一些——在算法进行过程中,对难以进行分类的观测值赋予了越来越大的权重。

我们知道你可能会在这方面产生疑问:什么叫做越来越大?我怎么知道我应该给一个被错分的观测值额外增加多少的权重呢?请保持冷静,我们将在接下来的章节里为你解答。

从一个简单的例子出发

假设你有一个初始的预测模型M需要进行准确度的提高,你知道这个模型目前的准确度为80%(通过任何形式度量),那么接下来你应该怎么做呢?

有一个方法是,我们可以通过一组新的输入变量来构建一个全新的模型,然后对它们进行集成学习。但是,笔者在此要提出一个更简单的建议,如下所示:

Y = M(x) + error

如果我们能够观测到误差项并非白噪声,而是与我们的模型输出(Y)有着相同的相关性,那么我们为什么不通过这个误差项来对模型的准确度进行提升呢?比方说:

error = G(x) + error2

或许,你会发现模型的准确率提高到了一个更高的数字,比如84%。那么下一步让我们对error2进行回归。

error2 = H(x) + error3

然后我们将上述式子组合起来:

Y = M(x) + G(x) + H(x) + error3

这样的结果可能会让模型的准确度更进一步,超过84%。如果我们能像这样为三个学习算法找到一个最佳权重分配,

Y = alpha * M(x) + beta * G(x) + gamma * H(x) + error4

那么,我们可能就构建了一个更好的模型。

上面所述的便是Boosting算法的一个基本原则,当我初次接触到这一理论时,我的脑海中很快地冒出了这两个小问题:

1.我们如何判断回归/分类方程中的误差项是不是白噪声?如果无法判断,我们怎么能用这种算法呢?

2.如果这种算法真的这么强大,我们是不是可以做到接近100%的模型准确度?

接下来,我们将会对这些问题进行解答,但是需要明确的是,Boosting算法的目标对象通常都是一些弱算法,而这些弱算法都不具备只保留白噪声的能力;其次,Boosting有可能导致过度拟合,所以我们必须在合适的点上停止这个算法。

试着想象一个分类问题

请看下图:

从最左侧的图开始看,那条垂直的线表示我们运用算法所构建的分类器,可以发现在这幅图中有3/10的观测值的分类情况是错误的。接着,我们给予那三个被误分的“+”型的观测值更高的权重,使得它们在构建分类器时的地位非常重要。这样一来,垂直线就直接移动到了接近图形右边界的位置。反复这样的过程之后,我们在通过合适的权重组合将所有的模型进行合并。

算法的理论基础

我们该如何分配观测值的权重呢?

通常来说,我们从一个均匀分布假设出发,我们把它称为D1,在这里,n个观测值分别被分配了1/n的权重。

步骤1:假设一个α(t);

步骤2:得到弱分类器h(t);

步骤3:更新总体分布,

其中,

步骤4:再次运用新的总体分布去得到下一个分类器;

觉得步骤3中的数学很可怕吗?让我们来一起击破这种恐惧。首先,我们简单看一下指数里的参数,α表示一种学习率,y是实际的回应值(+1或-1),而h(x)则是分类器所预测的类别。简单来说,如果分类器预测错了,这个指数的幂就变成了1 *α, 反之则是-1*α。也就是说,如果某观测值在上一次预测中被预测错误,那么它对应的权重可能会增加。那么,接下来该做什么呢?

步骤5:不断重复步骤1-步骤4,直到无法发现任何可以改进的地方;

步骤6:对所有在上面步骤中出现过的分类器或是学习算法进行加权平均,权重如下所示:

案例练习

最近我参加了由Analytics Vidhya组织的在线hackathon活动。为了使变量变换变得容易,在complete_data中我们合并了测试集与训练集中的所有数据。我们将数据导入,并且进行抽样和分类。

library(caret)rm(list=ls())setwd("C:Usersts93856DesktopAV")library(Metrics)complete <- read.csv("complete_data.csv", stringsAsFactors = TRUE)train <- complete[complete$Train == 1,]score <- complete[complete$Train != 1,]set.seed(999)ind <- sample(2, nrow(train), replace=T, prob=c(0.60,0.40))trainData<-train[ind==1,]testData <- train[ind==2,]set.seed(999)ind1 <- sample(2, nrow(testData), replace=T, prob=c(0.50,0.50))trainData_ens1<-testData[ind1==1,]testData_ens1 <- testData[ind1==2,]table(testData_ens1$Disbursed)[2]/nrow(testData_ens1)#Response Rate of 9.052%

接下来,就是构建一个梯度推进模型(Gradient Boosting Model)所要做的:

fitControl <- trainControl(method = "repeatedcv", number = 4, repeats = 4)trainData$outcome1 <- ifelse(trainData$Disbursed == 1, "Yes","No")set.seed(33)gbmFit1 <- train(as.factor(outcome1) ~ ., data = trainData[,-26], method = "gbm", trControl = fitControl,verbose = FALSE)gbm_dev <- predict(gbmFit1, trainData,type= "prob")[,2]gbm_ITV1 <- predict(gbmFit1, trainData_ens1,type= "prob")[,2]gbm_ITV2 <- predict(gbmFit1, testData_ens1,type= "prob")[,2]auc(trainData$Disbursed,gbm_dev)auc(trainData_ens1$Disbursed,gbm_ITV1)auc(testData_ens1$Disbursed,gbm_ITV2)

在上述案例中,运行代码后所看到的所有AUC值将会非常接近0.84。我们随时欢迎你对这段代码进行进一步的完善。在这个领域,梯度推进模型(GBM)是最为广泛运用的方法,在未来的文章里,我们可能会对GXBoost等一些更加快捷的Boosting算法进行介绍。

结束语

笔者曾不止一次见识过Boosting算法的迅捷与高效,在Kaggle或是其他平台的竞赛中,它的得分能力从未令人失望,当然了,也许这要取决于你能够把特征工程(feature engineering)做得多好了。

以上是小编为大家分享的关于基于R语言的梯度推进算法介绍的相关内容,更多信息可以关注环球青藤分享更多干货

模式识别的三大核心问题包括:

特征选择 特征变换 都能够达到降维的目的,但是两者所采用的方式方法是不同的。

特征提取 主要是通过分析特征间的关系,变换原来特征空间,从而达到压缩特征的目的。主要方法有:主成分分析(PCA)、离散K-L变换法(DKLT)等。

特征选择 选择方法是从原始特征集中挑选出子集,是原始特征的选择和组合,并没有更改原始特征空间,特征选择的过程必须确保不丢失重要特征。主要方法有:遗传算法(GA)、统计检验法、分支定界法等。

这里主要讲讲特征选择中 遗传算法 以及它的R语言实现(因为要写作业,虽然不一定写对了)。

遗传算法受进化论启发,根据“物竞天择,适者生存”这一规则,模拟自然界进化机制,寻找目标函数的最大值。

采用遗传算法对男女生样本数据中的身高、体重、鞋码、50m成绩、肺活量、是否喜欢运动共6个特征进行特征选择。

由于有6个特征,因此选用6位0/1进行编码,1表示选中该特征。

适应度函数的实现

示例

结果如下

有什么不对的地方欢迎大家在评论区指出。

箱线图(Boxplot)也称箱须图(Box-whisker Plot),是利用数据中的五个统计量:最小值、第一四分位数、中位数、第三四分位数与最大值来描述数据的一种方法。它也可以粗略地看出数据是否具有有对称性,分布的离散程度等信息;特别适用于对几个样本的比较。 注:四分位数(Quartile),即统计学中,把所有数值由小到大排列并分成四等份,处于三个分割点位置的数值就是四分位数。  第一四分位数 (Q1),又称“较小四分位数”,等于该样本中所有数值由小到大排列后第25%的数字。   第二四分位数 (Q2),又称“中位数”,等于该样本中所有数值由小到大排列后第50%的数字。   第三四分位数 (Q3),又称“较大四分位数”,等于该样本中所有数值由小到大排列后第75%的数字。   第三四分位数与第一四分位数的差距又称四分位距(InterQuartile Range,IQR)。 R语言中计算方法: quantile函数直接计算四分位: 例如:data = c(1,2,3,4,5,6.2,7,8,9,10) quantile(data)   #其结果如下 0%       25%       50%       75%       100% 1.00      3.25       5.60        7.75      10.00 其中0%:最小值;25%:第一四分位数Q1;50%:中位数;75%:第三四分位数;100%:最大值。 其计算方法为: 1. 排序,从小到大排列data; 2. 计算分位数的位置;pos = 1+ (n-1)*p,n为数据的总个数,p为0-1之间的值 3. 给出分位数 注意:另一种分位数的计算方法为:其他与前面的一致。但是分位数位置的计算采用:pos = (n+1)*p,n为数据的总个数,p为0-1之间的值。 四分位数的计算方法没有一个统计的标准,如果对此计算有要求的,需要注意函数的具体算法。 另外,boxplot中存在异常值,其规定标准如下: 当数据中的值大于或小于箱体的四分位距IQR的1.5倍时,认定为异常值。 就是说当某值大于(Q3+1.5*IQR)或小于(Q1-1.5*IQR)时,处理时会认定为异常值。