通俗理解TF-IDF

Python011

通俗理解TF-IDF,第1张

在信息检索中,tf-idf(词频-逆文档频率)是一种统计方法,用以评估一个单词在一个文档集合或语料库中的重要程度。经常被用作信息检索、文本挖掘以及用户模型的权重因素。tf-idf的值会随着单词在文档中出现的次数的增加而增大,也会随着单词在语料库中出现的次数的增多而减小。tf-idf是如今最流行的词频加权方案之一。

tf-idf的各种改进版本经常被搜索引擎用作在给定用户查询时对文档的相关性进行评分和排序的主要工具。tf-idf可以成功地用于各种主题字段的停用词过滤,包括文本摘要和分类。

TF-IDF实际上是:TF * IDF。主要思想是:如果某个词或短语在一篇文章中出现的频率高(即TF高),并且在其他文章中很少出现(即IDF高),则认为此词或者短语具有很好的类别区分能力,适合用来分类。

通俗理解TF-IDF就是:TF刻画了词语t对某篇文档的重要性,IDF刻画了词语t对整个文档集的重要性。

TF(Term Frequency,词频)表示一个给定词语t在一篇给定文档d中出现的频率。TF越高,则词语t对文档d来说越重要,TF越低,则词语t对文档d来说越不重要。那是否可以以TF作为文本相似度评价标准呢?答案是不行的,举个例子,常用的中文词语如“我”,“了”,“是”等,在给定的一篇中文文档中出现的频率是很高的,但这些中文词几乎在每篇文档中都具有非常高的词频,如果以TF作为文本相似度评价标准,那么几乎每篇文档都能被命中。

对于在某一文档 d j 里的词语 t i 来说,t i 的词频可表示为:

IDF(Inverse Document Frequency,逆向文件频率)的主要思想是:如果包含词语t的文档越少,则IDF越大,说明词语t在整个文档集层面上具有很好的类别区分能力。IDF说明了什么问题呢?还是举个例子,常用的中文词语如“我”,“了”,“是”等在每篇文档中几乎具有非常高的词频,那么对于整个文档集而言,这些词都是不重要的。对于整个文档集而言,评价词语重要性的标准就是IDF。

某一特定词语的IDF,可以由总文件数除以包含该词语的文件数,再将得到的商取对数得到:

TFIDF算法是建立在这样一个假设之上的:对区别文档最有意义的词语应该是那些在文档中出现频率高,而在整个文档集合的其他文档中出现频率少的词语,所以如果特征空间坐标系取TF词频作为测度,就可以体现同类文本的特点。另外考虑到单词区别不同类别的能力,TF-IDF法认为一个单词出现的文本频数(即包含某个单词的文本数)越小,它区别不同类别文本的能力就越大。因此引入了逆文本频度IDF的概念,以TF和IDF的乘积作为特征空间坐标系的取值测度,并用它完成对权值TF的调整,调整权值的目的在于突出重要单词,抑制次要单词。但是在本质上IDF是一种试图抑制噪声的加权,并且单纯地认为文本频率小的单词就越重要,文本频率大的单词就越无用,显然这并不是完全正确的。IDF的简单结构并不能有效地反映单词的重要程度和特征词的分布情况,使其无法很好地完成对权值调整的功能,所以TF-IDF法的精度并不是很高。

此外,在TFIDF算法中并没有体现出单词的位置信息,对于Web文档而言,权重的计算方法应该体现出HTML的结构特征。特征词在不同的标记符中对文章内容的反映程度不同,其权重的计算方法也应不同。因此应该对于处于网页不同位置的特征词分别赋予不同的系数,然后乘以特征词的词频,以提高文本表示的效果。

1,TF−IDF算法

TF是指归一化后的词频,IDF是指逆文档频率。给定一个文档集合D,有d1,d2,d3,......,dn∈D。文档集合总共包含m个词(注:一般在计算TF−IDF时会去除如“的”这一类的停用词),有w1,w2,w3,......,wm∈W。我们现在以计算词wi在文档dj中的TF−IDF指为例。TF的计算公式为:

TF=freq(i,j)maxlen(j)

在这里freq(i,j) 为wi在dj中出现的频率,maxlen(j)为dj长度。

TF只能时描述词在文档中的频率,但假设现在有个词为”我们“,这个词可能在文档集D中每篇文档中都会出现,并且有较高的频率。那么这一类词就不具有很好的区分文档的能力,为了降低这种通用词的作用,引入了IDF。

IDF的表达式如下:

IDF=log(len(D)n(i))

在这里len(D)表示文档集合D中文档的总数,n(i)表示含有wi这个词的文档的数量。

得到TF和IDF之后,我们将这两个值相乘得到TF−IDF的值:

TF−IDF=TF∗IDF

TF可以计算在一篇文档中词出现的频率,而IDF可以降低一些通用词的作用。因此对于一篇文档我们可以用文档中每个词的TF−IDF组成的向量来表示该文档,再根据余弦相似度这类的方法来计算文档之间的相关性。

2,BM25算法

BM25算法通常用来做搜索相关性评分的,也是ES中的搜索算法,通常用来计算query和文本集合D中每篇文本之间的相关性。我们用Q表示query,在这里Q一般是一个句子。在这里我们要对Q进行语素解析(一般是分词),在这里以分词为例,我们对Q进行分词,得到q1,q2,......,qt这样一个词序列。给定文本d∈D,现在以计算Q和d之间的分数(相关性),其表达式如下:

Score(Q,d)=∑ti=1wi∗R(qi,d)

  上面式子中wi表示qi的权重,R(qi,d)为qi和d的相关性,Score(Q,d)就是每个语素qi和d的相关性的加权和。

wi的计算方法有很多,一般是用IDF来表示的,但这里的IDF计算和上面的有所不同,具体的表达式如下:

wi=IDF(qi)=logN−n(qi)+0.5n(qi)+0.5

上面式子中N表示文本集合中文本的总数量,n(qi)表示包含qi这个词的文本的数量,0.5主要是做平滑处理。

R(qi,d)的计算公式如下:

R(qi,d)=fi∗(k1+1)fi+K∗qfi∗(k2+1)qfi+k2

其中

K=k1∗(1−b+b∗dlavgdl)

上面式子中fi为qi在文本d中出现的频率,qfi为qi在Q中出现的频率,k1,k2,b都是可调节的参数,dl,avgdl分别为文本d的长度和文本集D中所有文本的平均长度。

一般qfi=1,取k2=0,则可以去除后一项,将上面式子改写成:

R(qi,d)=fi∗(k1+1)fi+K

通常设置k1=2,b=0.75。参数b的作用主要是调节文本长度对相关性的影响。

参考文章: