R语言-相关性检验及线性拟合

Python012

R语言-相关性检验及线性拟合,第1张

相关性检验R=1时为完全正相关。R=-1为完全负相关。R=0为正态分布

斜率与R值无关

输出P值为0.0122显示明显正相关

计算直线:

lm(纵坐标,横坐标,data=数据框)

图加直线:

abline(直线数据,col=”颜色“,lwd=数值)

lwd为线的宽度

使用R语言进行协整关系检验协整检验是为了检验非平稳序列的因果关系,协整检验是解决伪回归为问题的重要方法。首先回归伪回归例子:伪回归Spurious regression伪回归方程的拟合优度、显著性水平等指标都很好,但是其残差序列是一个非平稳序列,拟合一个伪回归:#调用相关R包library(lmtest)library(tseries)#模拟序列set.seed(123456)e1=rnorm(500)e2=rnorm(500)trd=1:500y1=0.8*trd+cumsum(e1)y2=0.6*trd+cumsum(e2)sr.reg=lm(y1~y2)#提取回归残差error=residuals(sr.reg)#作残差散点图plot(error, main="Plot of error")#对残差进行单位根检验adf.test(error)## Dickey-Fuller = -2.548, Lag order = 7, p-value = 0.3463## alternative hypothesis: stationary#伪回归结果,相关参数都显著summary(sr.reg)## Residuals:## Min 1Q Median 3Q Max## -30.654 -11.526 0.359 11.142 31.006## Coefficients:## Estimate Std. Error t value Pr(>|t|)## (Intercept) -29.32697 1.36716 -21.4 <2e-16 ***## y2 1.44079 0.00752 191.6 <2e-16 ***## Residual standard error: 13.7 on 498 degrees of freedom## Multiple R-squared: 0.987, Adjusted R-squared: 0.987## F-statistic: 3.67e+04 on 1 and 498 DF, p-value: <2e-16dwtest(sr.reg)## DW = 0.0172, p-value <2.2e-16恩格尔-格兰杰检验Engle-Granger第一步:建立两变量(y1,y2)的回归方程,第二部:对该回归方程的残差(resid)进行单位根检验其中,原假设两变量不存在协整关系,备择假设是两变量存在协整关系。利用最小二乘法对回归方程进行估计,从回归方程中提取残差进行检验。set.seed(123456)e1=rnorm(100)e2=rnorm(100)y1=cumsum(e1)y2=0.6*y1+e2# (伪)回归模型lr.reg=lm(y2~y1)error=residuals(lr.reg)adf.test(error)## Dickey-Fuller = -3.988, Lag order = 4, p-value = 0.01262## alternative hypothesis: stationaryerror.lagged=error[-c(99,100)]#建立误差修正模型ECM.REGdy1=diff(y1)dy2=diff(y2)diff.dat=data.frame(embed(cbind(dy1, dy2),2))#emed表示嵌入时间序列dy1,dy2到diff.datcolnames(diff.dat)=c("dy1","dy2","dy1.1","dy2.1")ecm.reg=lm(dy2~error.lagged+dy1.1+dy2.1, data=diff.dat)summary(ecm.reg)## Residuals:## Min 1Q Median 3Q Max## -2.959 -0.544 0.137 0.711 2.307## Coefficients:## Estimate Std. Error t value Pr(>|t|)## (Intercept) 0.0034 0.1036 0.03 0.97## error.lagged -0.9688 0.1585 -6.11 2.2e-08 ***## dy1.1 0.8086 0.1120 7.22 1.4e-10 ***## dy2.1 -1.0589 0.1084 -9.77 5.6e-16 ***## Residual standard error: 1.03 on 94 degrees of freedom## Multiple R-squared: 0.546, Adjusted R-squared: 0.532## F-statistic: 37.7 on 3 and 94 DF, p-value: 4.24e-16par(mfrow=c(2,2))plot(ecm.reg)Johansen-Juselius(JJ)协整检验法,该方法是一种用向量自回归(VAR)模型进行检验的方法,适用于对多重一阶单整I(1)序列进行协整检验。JJ检验有两种:特征值轨迹检验和最大特征值检验。我们可以调用urca包中的ca.jo命令完成这两种检验。其语法:ca.jo(x, type = c("eigen", "trace"), ecdet = c("none", "const", "trend"), K = 2,spec=c("longrun", "transitory"), season = NULL, dumvar = NULL)其中:x为矩阵形式数据框;type用来设置检验方法;ecdet用于设置模型形式:none表示不带截距项,const表示带常数截距项,trend表示带趋势项。K表示自回归序列的滞后阶数;spec表示向量误差修正模型反映的序列间的长期或短期关系;season表示季节效应;dumvar表示哑变量设置。set.seed(12345)e1=rnorm(250,0,0.5)e2=rnorm(250,0,0.5)e3=rnorm(250,0,0.5)#模拟没有移动平均的向量自回归序列;u1.ar1=arima.sim(model=list(ar=0.75), innov=e1, n=250)u2.ar1=arima.sim(model=list(ar=0.3), innov=e2, n=250)y3=cumsum(e3)y1=0.8*y3+u1.ar1y2=-0.3*y3+u2.ar1#合并y1,y2,y3构成进行JJ检验的数据库;y.mat=data.frame(y1, y2, y3)#调用urca包中cajo命令对向量自回归序列进行JJ协整检验vecm=ca.jo(y.mat)jo.results=summary(vecm)#cajorls命令可以得到限制协整阶数的向量误差修正模型的最小二乘法回归结果vecm.r2=cajorls(vecm, r=2)vecm.r2## Call:lm(formula = substitute(form1), data = data.mat)## Coefficients:## y1.d y2.d y3.d## ect1 -0.33129 0.06461 0.01268## ect2 0.09447 -0.70938 -0.00916## constant 0.16837 -0.02702 0.02526## y1.dl1-0.22768 0.02701 0.06816## y2.dl1 0.14445 -0.71561 0.04049## y3.dl1 0.12347 -0.29083 -0.07525## $beta## ect1 ect2## y1.l2 1.000e+00 0.0000## y2.l2 -3.402e-18 1.0000## y3.l2 -7.329e-01 0.2952

模型拟合

对于人口模型可以采用Logistic增长函数形式,它考虑了初期的指数增长以及总资源的限制。其函数形式如下。

首先载入car包以便读取数据,然后使用nls函数进行建模,其中theta1、theta2、theta3表示三个待估计参数,start设置了参数初始值,设定trace为真以显示迭代过程。nls函数默认采用Gauss-Newton方法寻找极值,迭代过程中第一列为RSS值,后面三列是各参数估计值。然后用summary返回回归结果。

library(car)

pop.mod1 <- nls(population ~ theta1/(1+exp(-(theta2+theta3*year))),start=list(theta1 = 400, theta2 = -49, theta3 = 0.025), data=USPop, trace=T)

summary(pop.mod)

在上面的回归过程中我们直接指定参数初始值,另一种方法是采用搜索策略,首先确定参数取值范围,然后利用nls2包的暴力方法来得到最优参数。但这种方法相当费时。

还有一种更为简便的方法就是采用内置自启动模型(self-starting Models),此时我们只需要指定函数形式,而不需要指定参数初始值。本例的logistic函数所对应的selfstarting函数名为SSlogis

pop.mod2 <- nls(population ~ SSlogis(year,phi1,phi2,phi3),data=USPop)

二、判断拟合效果

非线性回归模型建立后需要判断拟合效果,因为有时候参数最优化过程会捕捉到局部极值点而非全局极值点。最直观的方法是在原始数据点上绘制拟合曲线。

library(ggplot2)

p <- ggplot(USPop,aes(year, population))