请问R语言里有没有做非线性VAR模型的包?

Python012

请问R语言里有没有做非线性VAR模型的包?,第1张

这里分享一下R语言实现VAR和SVAR的整个流程。

主要步骤包括:

1.单位根检验

2.确定滞后阶数

3.格兰杰因果检验

4.模型稳定性检验

5.脉冲响应

6.方差分解

(Johansen协整检验,如果需要的话)

整个过程用到的R语言的扩展包有:

library(zoo)

library(vars)

library(tseries)

首先,数据是下面的样子:

ps:数据是时间序列类型,可以通过下面方法将dataframe转成时间序列类型

data = ts(data)

1.单位根检验

#对data的第一列进行单位根检验

adf.test(data[,1])

2.滞后阶数确定

VARselect函数结果包括AIC、HQ、SC和FPE准则

#参数y为时间序列数据,lag.max为最大滞后阶数

#参数type值包括const截距,trend趋势,both同时包含截距和趋势,none不包含截距和趋势

VARselect(y=data, lag.max = 10, type = c("const"))

3.格兰杰因果检验

格兰杰因果检验有两个方法,第一个是在构造模型之前,第二个是在构造模型之后在模型的基础上进行格兰杰因果检验。

(1)构造模型之前格兰杰因果检验

#函数格式:grangertest(yt~xt)

eg:

grangertest(Value~BCI)

(2)构造模型之后格兰杰因果检验

#函数格式:causality(VARModel,cause)

eg

var =  VAR(data ,p = 2, type = "const")

causality(var,cause=c('Count','Value'))

ps:在这里如果想要构建SVAR模型的话,需要根据实际情况构建两个矩阵amat和bmat,然后使用这两个矩阵来构建SVAR模型:

svar = SVAR(var,Amat = amat,Bmat = bmat)

4.模型稳定性检验

#这里使用“OLS-CUSUM”,它给出的是残差累积和,在该检验生成的曲线图中,残差累积和曲线以时间为横坐标,

#图中绘出两条临界线,如果累积和超出了这两条临界线,则说明参数不具有稳定性。

sta = stability(var, type = c("OLS-CUSUM"), h = 0.15, dynamic = FALSE, rescale = TRUE)

plot(sta)##结果稳健

5.脉冲响应

#标题栏说明,这是BCI(或者其他变量)对各个变量(包括BCI自身)的脉冲响应

(1)VAR脉冲响应

var.irf<-irf(var,n.head=10)

plot(var.irf)

(2)SVAR脉冲响应

svar.irf<-irf(svar,n.ahead = 100)

plot(svar.irf)

6.方差分解

#反映了各变量的贡献率

(1)VAR方差分解

fevd1<-fevd(var, n.ahead = 10)

fevd1$Count

(2)SVAR方差分解

fevd2<-fevd(svar, n.ahead = 10)

fevd2$Value

ps:有时候需要进行Johansen协整检验

#Johansen协整检验,

#对r=0(不存在协整关系)的检验统计量大于临界值,表明拒绝原假设

yJoTest = ca.jo(data, type = c("trace"), ecdet = c("none"), K = 2)

summary(yJoTest)

网页链接

智能运维(AIops)是目前 IT 运维领域最火热的词汇,全称是 Algorithmic IT operations platforms,正规翻译是『基于算法的 IT 运维平台』,直观可见算法是智能运维的核心要素之一。

本文主要谈算法对运维的作用,涉及异常检测和归因分析两方面,围绕运维系统Kale 中 skyline、Oculus 模块、Opprentice 系统、Granger causality(格兰杰因果关系)、FastDTW 算法等细节展开。

一、异常检测

异常检测,是运维工程师们最先可能接触的地方了。毕竟监控告警是所有运维工作的基础。设定告警阈值是一项耗时耗力的工作,需要运维人员在充分了解业务的前提下才能进行,还得考虑业务是不是平稳发展状态,否则一两周改动一次,运维工程师绝对是要发疯的。

如果能将这部分工作交给算法来解决,无疑是推翻一座大山。这件事情,机器学习当然可以做到。但是不用机器学习,基于数学统计的算法,同样可以,而且效果也不差。

异常检测之Skyline异常检测模块

2013年,Etsy 开源了一个内部的运维系统,叫 Kale。其中的 skyline 部分,就是做异常检测的模块, 它提供了 9 种异常检测算法 :

first_hour_average、

simple_stddev_from_moving_average、

stddev_from_moving_average、

mean_subtraction_cumulation、

least_squares

histogram_bins、

grubbs、

median_absolute_deviation、

Kolmogorov-Smirnov_test

简要的概括来说,这9种算法分为两类:

从正态分布入手:假设数据服从高斯分布,可以通过标准差来确定绝大多数数据点的区间;或者根据分布的直方图,落在过少直方里的数据就是异常;或者根据箱体图分析来避免造成长尾影响。

从样本校验入手:采用 Kolmogorov-Smirnov、Shapiro-Wilk、Lilliefor 等非参数校验方法。

这些都是统计学上的算法,而不是机器学习的事情。当然,Etsy 这个 Skyline 项目并不是异常检测的全部。

首先,这里只考虑了一个指标自己的状态,从纵向的时序角度做异常检测。而没有考虑业务的复杂性导致的横向异常。其次,提供了这么多种算法,到底一个指标在哪种算法下判断的更准?这又是一个很难判断的事情。

问题一: 实现上的抉择。同样的样本校验算法,可以用来对比一个指标的当前和历史情况,也可以用来对比多个指标里哪个跟别的指标不一样。

问题二: Skyline 其实自己采用了一种特别朴实和简单的办法来做补充——9 个算法每人一票,投票达到阈值就算数。至于这个阈值,一般算 6 或者 7 这样,即占到大多数即可。

异常检测之Opprentice系统

作为对比,面对相同的问题,百度 SRE 的智能运维是怎么处理的。在去年的 APMcon 上,百度工程师描述 Opprentice 系统的主要思想时,用了这么一张图:

Opprentice 系统的主体流程为:

KPI 数据经过各式 detector 计算得到每个点的诸多 feature;

通过专门的交互工具,由运维人员标记 KPI 数据的异常时间段;

采用随机森林算法做异常分类。

其中 detector 有14种异常检测算法,如下图:

我们可以看到其中很多算法在 Etsy 的 Skyline 里同样存在。不过,为避免给这么多算法调配参数,直接采用的办法是:每个参数的取值范围均等分一下——反正随机森林不要求什么特征工程。如,用 holt-winters 做为一类 detector。holt-winters 有α,β,γ 三个参数,取值范围都是 [0, 1]。那么它就采样为 (0.2, 0.4, 0.6, 0.8),也就是 4 ** 3 = 64 个可能。那么每个点就此得到  64  个特征值。

异常检测之

Opprentice 系统与 Skyline 很相似

Opprentice 系统整个流程跟 skyline 的思想相似之处在于先通过不同的统计学上的算法来尝试发现异常,然后通过一个多数同意的方式/算法来确定最终的判定结果。

只不过这里百度采用了一个随机森林的算法,来更靠谱一点的投票。而 Etsy 呢?在 skyline 开源几个月后,他们内部又实现了新版本,叫 Thyme。利用了小波分解、傅里叶变换、Mann-whitney 检测等等技术。

另外,社区在 Skyline 上同样做了后续更新,Earthgecko 利用 Tsfresh 模块来提取时序数据的特征值,以此做多时序之间的异常检测。我们可以看到,后续发展的两种 Skyline,依然都没有使用机器学习,而是进一步深度挖掘和调整时序相关的统计学算法。

开源社区除了 Etsy,还有诸多巨头也开源过各式其他的时序异常检测算法库,大多是在 2015 年开始的。列举如下:

Yahoo! 在去年开源的 egads 库。(Java)

Twitter 在去年开源的 anomalydetection 库。(R)

Netflix 在 2015 年开源的 Surus 库。(Pig,基于PCA)

其中 Twitter 这个库还被 port 到 Python 社区,有兴趣的读者也可以试试。

二、归因分析

归因分析是运维工作的下一大块内容,就是收到报警以后的排障。对于简单故障,应对方案一般也很简单,采用 service restart engineering~ 但是在大规模 IT 环境下,通常一个故障会触发或导致大面积的告警发生。如果能从大面积的告警中,找到最紧迫最要紧的那个,肯定能大大的缩短故障恢复时间(MTTR)。

这个故障定位的需求,通常被归类为根因分析(RCA,Root Cause Analysis)。当然,RCA 可不止故障定位一个用途,性能优化的过程通常也是 RCA 的一种。

归因分析之 Oculus 模块

和异常检测一样,做 RCA 同样是可以统计学和机器学习方法并行的~我们还是从统计学的角度开始。依然是 Etsy 的 kale 系统,其中除了做异常检测的 skyline 以外,还有另外一部分,叫 Oculus。而且在 Etsy 重构 kale 2.0 的时候,Oculus 被认为是1.0 最成功的部分,完整保留下来了。

Oculus 的思路,用一句话描述,就是:如果一个监控指标的时间趋势图走势,跟另一个监控指标的趋势图长得比较像,那它们很可能是被同一个根因影响的。那么,如果整体 IT 环境内的时间同步是可靠的,且监控指标的颗粒度比较细的情况下,我们就可能近似的推断:跟一个告警比较像的最早的那个监控指标,应该就是需要重点关注的根因了。

Oculus 截图如下:

这部分使用的 计算方式有两种:

欧式距离,就是不同时序数据,在相同时刻做对比。假如0分0秒,a和b相差1000,0分5秒,也相差1000,依次类推。

FastDTW,则加了一层偏移量,0分0秒的a和0分5秒的b相差1000,0分5秒的a和0分10秒的b也相差1000,依次类推。当然,算法在这个简单假设背后,是有很多降低计算复杂度的具体实现的,这里就不谈了。

唯一可惜的是 Etsy 当初实现 Oculus 是基于 ES 的 0.20 版本,后来该版本一直没有更新。现在停留在这么老版本的 ES 用户应该很少了。除了 Oculus,还有很多其他产品,采用不同的统计学原理,达到类似的效果。

归因分析之 Granger causality

Granger causality(格兰杰因果关系)是一种算法,简单来说它通过比较“已知上一时刻所有信息,这一时刻 X 的概率分布情况”和“已知上一时刻除 Y 以外的所有信息,这一时刻 X 的概率分布情况”,来判断 Y 对 X 是否存在因果关系。

可能有了解过一点机器学习信息的读者会很诧异了:不是说机器只能反应相关性,不能反应因果性的么?需要说明一下,这里的因果,是统计学意义上的因果,不是我们通常哲学意义上的因果。

统计学上的因果定义是:『在宇宙中所有其他事件的发生情况固定不变的条件下,如果一个事件 A 的发生与不发生对于另一个事件 B 的发生的概率有影响,并且这两个事件在时间上有先后顺序(A 前 B 后),那么我们便可以说 A 是 B 的原因。』

归因分析之皮尔逊系数

另一个常用的算法是皮尔逊系数。下图是某 ITOM 软件的实现:

我们可以看到,其主要元素和采用 FastDTW 算法的 Oculus 类似:correlation 表示相关性的评分、lead/lag 表示不同时序数据在时间轴上的偏移量。

皮尔逊系数在 R 语言里可以特别简单的做到。比如我们拿到同时间段的访问量和服务器 CPU 使用率:

然后运行如下命令:

acc_count<-scale(acc$acc_count,center=T,scale=T)

cpu<-scale(acc$cpuload5,center=T,scale=T)

cor.test(acc_count,cpu)

可以看到如下结果输出:

对应的可视化图形如下:

这就说明网站数据访问量和 CPU 存在弱相关,同时从散点图上看两者为非线性关系。因此访问量上升不一定会真正影响 CPU 消耗。

其实 R 语言不太适合嵌入到现有的运维系统中。那这时候使用 Elasticsearch 的工程师就有福了。ES 在大家常用的 metric aggregation、bucket aggregation、pipeline aggregation 之外,还提供了一种 matrix aggregation,目前唯一支持的 matrix_stats 就是采用了皮尔逊系数的计算,接口文档见:

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-matrix-stats-aggregation.html

唯一需要注意的就是,要求计算相关性的两个字段必须同时存在于一个 event 里。所以没法直接从现成的 ES 数据中请求不同的 date_histogram,然后计算,需要自己手动整理一遍,转储回 ES 再计算。

饶琛琳,目前就职日志易,有十年运维工作经验。在微博担任系统架构师期间,负责带领11人的SRE团队。著有《网站运维技术与实践》、《ELKstack权威指南》,合译有《Puppet 3 Cookbook》、《Learning Puppet 4》。在众多技术大会上分享过自动化运维与数据分析相关主题。

∵ r(t)=e(1-t)

∴ r(t-to)=e(1-t-to)=e(1-2to) (当t=to时)

而此时r(t-to)=r(0), 若to<1/2,则r(0)=e(A),令A=1-2to且由题意A>0, 很显然可以得出r(t)在t>0时有激励相应。该系统是时变,而且也是非因果系统,当to<1/2时受影响

扩展资料:

对于连续时间系统t=t1的输出y(t1)只取决于t≤t1的输入x(t≤t1)时,则此系统为因果系统。

特殊的,当该系统为线性移不变系统时:

(1)时域判决:

系统的冲激响应函数h(t),在t<0的条件下,h(t)=0,则此系统为因果系统;如果系统的单位冲激响应在t>0时,h(t)=0,就说该系统是反因果的。

(2)S域判决:

系统函数的收敛域应该是s平面上某一收敛轴的右半平面。换句话说,系统函数的极点只能分布在s平面上收敛轴的左半平面。对于离散时间系统

(1)时域判决:

k=k1的输出y(k1 )只取决于k≤k1的输入x(k≤k1)时,则此系统为因果系统。特殊的,当该系统为线性时不变系统时,系统的冲激响应函数h(k),在k<0的条件下,h(k)=0,则此系统为因果系统。即因果系统是激励加入之前不会出现响应的系统。

参考资料:百度百科-因果系统与信号