R 语言的优劣势是什么?

Python014

R 语言的优劣势是什么?,第1张

R编程语言在数字分析与机器学习领域已经成为一款重要的工具。随着机器逐步成为愈发核心的数据生成器,该语言的人气也必然会一路攀升。不过R语言当然也拥有着自己的优势与缺点,开发人员只有加以了解后才能充分发挥它的强大能力。

R语言随时间推移正呈现出愈发迅猛的发展态势,并成为能够将不同数据集、工具乃至软件包结合在一起的胶水型语言,R语言是创建可重复性及高质量分析的最佳途径。它拥有数据处理所必需的一切灵活性及强大要素

R语言拥有强大的软件包生态系统与图表优势,R语言的优势主要体现在其软件包生态系统上。庞大的软件包生态系统无疑是R语言最为突出的优势之一,其中内置有大量专门面向统计人员的实用功能,R语言具备可扩展能力且拥有丰富的功能选项,帮助开发人员构建自己的工具及方法,从而顺利实现数据分析,人们能够在无需申请权限的前提下对其进行扩展。,它最大的优势就是以自由软件的姿态出现。其源代码以及所有一切都可供,R语言在图形及图表方面的一切能够都是“无与伦比”的。

R的短板在于安全性与内存管理。说了这么多优势,R语言当然也存在着一定不足。内存管理、速度与效率可能是R语言面临的几大最为严峻的挑战,在这方面,人们仍然需要努力推动,而且也确实正在推动其进展与完善。R语言在设计思路上太太古老。这种语言的设计局限有时候会令大规模数据集处理工作遇到难题,此外,R语言无法被嵌入到网络浏览器当中,我们不能利用它开发Web类或者互联网类应用程序。再有,我们基本上没办法利用R语言当作后端服务器执行计算任务,因为它在网络层面缺乏安全性保障,长久以来,R语言当中始终缺少充足的交互元素。

R语言并不单纯面向高端程序员,我甚至并不认为R语言只适用于程序员。它非常适合那些面向数据并试图解决相关问题的用户,无论他们的实际编程能力如何

运算符是一个符号,通知编译器执行特定的数学或逻辑操作。 R语言具有丰富的内置运算符,并提供以下类型的运算符。

运算符的类型

R语言中拥有如下几种运算符类型:

算术运算符

关系运算符

逻辑运算符

赋值运算符

其他运算符

算术运算符

下表显示了R语言支持的算术运算符。 操作符对向量的每个元素起作用。

运算符 描述 例

关系运算符

下表显示了R语言支持的关系运算符。 将第一向量的每个元素与第二向量的相应元素进行比较。 比较的结果是布尔值。

运算符 描述 例

逻辑运算符

下表显示了R语言支持的逻辑运算符。 它只适用于逻辑,数字或复杂类型的向量。 所有大于1的数字被认为是逻辑值TRUE。

将第一向量的每个元素与第二向量的相应元素进行比较。 比较的结果是布尔值。

运算符 描述 例

& 它被称为元素逻辑AND运算符。 它将第一向量的每个元素与第二向量的相应元素组合,并且如果两个元素都为TRUE,则给出输出TRUE。

v <- c(3,1,TRUE,2+3i)

t <- c(4,1,FALSE,2+3i)

print(v&t)

它产生以下结果 -

TRUE TRUE FALSE TRUE

| 它被称为元素逻辑或运算符。 它将第一向量的每个元素与第二向量的相应元素组合,并且如果元素为真,则给出输出TRUE。

v <- c(3,0,TRUE,2+2i)

t <- c(4,0,FALSE,2+3i)

print(v|t)

它产生以下结果 -

TRUE FALSE TRUE TRUE

! 它被称为逻辑非运算符。 取得向量的每个元素,并给出相反的逻辑值。

v <- c(3,0,TRUE,2+2i)

print(!v)

它产生以下结果 -

FALSE TRUE FALSE FALSE

逻辑运算符&&和|| 只考虑向量的第一个元素,给出单个元素的向量作为输出。

运算符 描述 例

&& 称为逻辑AND运算符。 取两个向量的第一个元素,并且只有两个都为TRUE时才给出TRUE。

v <- c(3,0,TRUE,2+2i)

t <- c(1,3,TRUE,2+3i)

print(v&&t)

它产生以下结果 -

TRUE

|| 称为逻辑OR运算符。 取两个向量的第一个元素,如果其中一个为TRUE,则给出TRUE。

v <- c(0,0,TRUE,2+2i)

t <- c(0,3,TRUE,2+3i)

print(v||t)

它产生以下结果 -

FALSE

赋值运算符

这些运算符用于向向量赋值。

运算符 描述 例

<−

or

=

or

<<−

称为左分配

v1 <- c(3,1,TRUE,2+3i)

v2 <<- c(3,1,TRUE,2+3i)

v3 = c(3,1,TRUE,2+3i)

print(v1)

print(v2)

print(v3)

它产生以下结果 -

3+0i 1+0i 1+0i 2+3i

3+0i 1+0i 1+0i 2+3i

3+0i 1+0i 1+0i 2+3i

->

or

->>

称为右分配

c(3,1,TRUE,2+3i) ->v1

c(3,1,TRUE,2+3i) ->>v2

print(v1)

print(v2)

它产生以下结果 -

3+0i 1+0i 1+0i 2+3i

3+0i 1+0i 1+0i 2+3i

其他运算符

这些运算符用于特定目的,而不是一般的数学或逻辑计算。

运算符 描述 例

: 冒号运算符。 它为向量按顺序创建一系列数字。

v <- 2:8

print(v)

它产生以下结果 -

2 3 4 5 6 7 8

%in%此运算符用于标识元素是否属于向量。

v1 <- 8

v2 <- 12

t <- 1:10

print(v1 %in% t)

print(v2 %in% t)

它产生以下结果 -

TRUE

FALSE

% % 此运算符用于将矩阵与其转置相乘。

M = matrix( c(2,6,5,1,10,4), nrow = 2,ncol = 3,byrow = TRUE)

t = M % % t(M)

print(t)

它产生以下结果 -

[,1] [,2]

[1,] 65 82

[2,] 82 117

最初我是在“ A genome-based model for adjusting radiotherapy dose (GARD): a retrospective, cohort-based study ”这篇文章中看到的一个图。

它形似一张提琴图,展示了来自不同类型疾病患者个体的GARD得分的分布,图中红色点代表了中位数。但与常规提琴图不同的地方在于,提琴图中还添加了密度信息,即数值分布更多区域颜色更为明显。尽管提琴图的宽度足以代表数值的分布区间了,颜色的添加使其更为丰富多彩。

本节内容,就让我来讲一下这种“密度提琴图”如何在R中绘制。

其实,如果从提琴图的角度出发,即首先绘制一个提琴图,然后设法在其中标识出密度,则该图是很难实现的。这点我深有体会,好几个人折腾了老半天也没能成功地在提琴图中设置密度颜色。

因此,我们需要换个角度思考该图的绘制方法。设想一下,既然要表示密度,那么首先不妨绘制一个密度分布图观测数据。

有没有什么感触呢?

对的没错,密度提琴图可以视为两张“相反方向”的密度分布图的叠加。因此,我们再绘制一个反方向的。

最后,将两张图组合在一起,就获得密度提琴图了,是不是?

同时,也计算各个变量的中位数,并以红点的形式标注在图中。

这样,密度提琴图就得到了。和常规的提琴图相比,它是不是更漂亮呢?