如何学习R语言

Python016

如何学习R语言,第1张

在初学C语言时,可能会遇到有些问题理解不透,或者表达方式与以往数学学习中不同(如运算符等),这就要求不气馁,不明白的地方多问多想,鼓足勇气进行学习,待学完后面的章节知识,前面的问题也就迎刃而解了,这一方面我感觉是我们同学最欠缺,大多学不好的就是因为一开始遇到困难就放弃,曾经和好多同学谈他的问题,回答是听不懂、不想听、放弃这样三个过程,我反问,这节课你听过课吗?回答又是没有,根本就没听过课,怎么说自己听不懂呢?相应的根本就没学习,又谈何学的好?

学习C语言始终要记住“曙光在前头”和“千金难买回头看”,“千金难买回头看”是学习知识的重要方法,就是说,学习后面的知识,不要忘了回头弄清遗留下的问题和加深理解前面的知识,这是我们学生最不易做到的,然而却又是最重要的。学习C语言就是要经过几个反复,才能前后贯穿,积累应该掌握的C知识。

那么,我们如何学好《C程序设计》呢?

一.学好C语言的运算符和运算顺序

这是学好《C程序设计》的基础,C语言的运算非常灵活,功能十分丰富,运算种类远多于其它程序设计语言。在表达式方面较其它程序语言更为简洁,如自加、自减、逗号运算和三目运算使表达式更为简单,但初学者往往会觉的这种表达式难读,关键原因就是对运算符和运算顺序理解不透不全。当多种不同运算组成一个运算表达式,即一个运算式中出现多种运算符时,运算的优先顺序和结合规则显得十分重要。在学习中,只要我们对此合理进行分类,找出它们与我们在数学中所学到运算之间的不同点之后,记住这些运算也就不困难了,有些运算符在理解后更会牢记心中,将来用起来得心应手,而有些可暂时放弃不记,等用到时再记不迟。

先要明确运算符按优先级不同分类,《C程序设计》运算符可分为15种优先级,从高到低,优先级为1 ~ 15,除第2、3级和第14级为从右至左结合外,其它都是从左至右结合,它决定同级运算符的运算顺序.

二.学好C语言的四种程序结构

(1)顺序结构

顺序结构的程序设计是最简单的,只要按照解决问题的顺序写出相应的语句就行,它的执行顺序是自上而下,依次执行。

例如;a = 3,b = 5,现交换a,b的值,这个问题就好像交换两个杯子水,这当然要用到第三个杯子,假如第三个杯子是c,那么正确的程序为: c = a; a = b; b = c; 执行结果是a = 5,b = c = 3如果改变其顺序,写成:a = b; c = a; b = c; 则执行结果就变成a = b = c = 5,不能达到预期的目的,初学者最容易犯这种错误。 顺序结构可以独立使用构成一个简单的完整程序,常见的输入、计算,输出三步曲的程序就是顺序结构,例如计算圆的面积,其程序的语句顺序就是输入圆的半径r,计算s = 3.14159*r*r,输出圆的面积s。不过大多数情况下顺序结构都是作为程序的一部分,与其它结构一起构成一个复杂的程序,例如分支结构中的复合语句、循环结构中的循环体等。

(2) 分支结构

顺序结构的程序虽然能解决计算、输出等问题,但不能做判断再选择。对于要先做判断再选择的问题就要使用分支结构。分支结构的执行是依据一定的条件选择执行路径,而不是严格按照语句出现的物理顺序。分支结构的程序设计方法的关键在于构造合适的分支条件和分析程序流程,根据不同的程序流程选择适当的分支语句。分支结构适合于带有逻辑或关系比较等条件判断的计算,设计这类程序时往往都要先绘制其程序流程图,然后根据程序流程写出源程序,这样做把程序设计分析与语言分开,使得问题简单化,易于理解。程序流程图是根据解题分析所绘制的程序执行流程图。

学习分支结构不要被分支嵌套所迷惑,只要正确绘制出流程图,弄清各分支所要执行的功能,嵌套结构也就不难了。嵌套只不过是分支中又包括分支语句而已,不是新知识,只要对双分支的理解清楚,分支嵌套是不难的。下面我介绍几种基本的分支结构。

①if(条件)

{

分支体

}

这种分支结构中的分支体可以是一条语句,此时“{ }”可以省略,也可以是多条语句即复合语句。它有两条分支路径可选,一是当条件为真,执行分支体,否则跳过分支体,这时分支体就不会执行。如:要计算x的绝对值,根据绝对值定义,我们知道,当x>=0时,其绝对值不变,而x<0时其绝对值是为x的反号,因此程序段为:if(x<0) x=-x

②if(条件)

{分支1}

else

{分支2}

这是典型的分支结构,如果条件成立,执行分支1,否则执行分支2,分支1和分支2都可以是1条或若干条语句构成。如:求ax^2+bx+c=0的根

分析:因为当b^2-4ac>=0时,方程有两个实根,否则(b^2-4ac<0)有两个共轭复根。其程序段如下:

d=b*b-4*a*c

if(d>=0)

{x1=(-b+sqrt(d))/2a

x1=(-b-sqrt(d))/2a

printf(“x1=%8.4f,x2=%8.4f\n”,x1,x2)

}

else

{r=-b/(2*a)

i =sqrt(-d)/(2*a)

printf(“x1=%8.4f+%8.4fi\n”r, i)

printf(“x2=%8.4f-%8.4fi\n”r,i)

}

③嵌套分支语句:其语句格式为:

if(条件1) {分支1};

else if(条件2) {分支2}

else if(条件3) {分支3}

……

else if(条件n) {分支n}

else {分支n+1}

嵌套分支语句虽可解决多个入口和出口的问题,但超过3重嵌套后,语句结构变得非常复杂,对于程序的阅读和理解都极为不便,建议嵌套在3重以内,超过3重可以用下面的语句。

④switch开关语句:该语句也是多分支选择语句,到底执行哪一块,取决于开关设置,也就是表达式的值与常量表达式相匹配的那一路,它不同if…else 语句,它的所有分支都是并列的,程序执行时,由第一分支开始查找,如果相匹配,执行其后的块,接着执行第2分支,第3分支……的块,直到遇到break语句;如果不匹配,查找下一个分支是否匹配。这个语句在应用时要特别注意开关条件的合理设置以及break语句的合理应用。

(3)循环结构:

循环结构可以减少源程序重复书写的工作量,用来描述重复执行某段算法的问题,这是程序设计中最能发挥计算机特长的程序结构,C语言中提供四种循环,即goto循环、while循环、do –while循环和for循环。四种循环可以用来处理同一问题,一般情况下它们可以互相代替换,但一般不提倡用goto循环,因为强制改变程序的顺序经常会给程序的运行带来不可预料的错误,在学习中我们主要学习while、do…while、for三种循环。常用的三种循环结构学习的重点在于弄清它们相同与不同之处,以便在不同场合下使用,这就要清楚三种循环的格式和执行顺序,将每种循环的流程图理解透彻后就会明白如何替换使用,如把while循环的例题,用for语句重新编写一个程序,这样能更好地理解它们的作用。特别要注意在循环体内应包含趋于结束的语句(即循环变量值的改变),否则就可能成了一个死循环,这是初学者的一个常见错误。

在学完这三个循环后,应明确它们的异同点:用while和do…while循环时,循环变量的初始化的操作应在循环体之前,而for循环一般在语句1中进行的;while 循环和for循环都是先判断表达式,后执行循环体,而do…while循环是先执行循环体后判断表达式,也就是说do…while的循环体最少被执行一次,而while 循环和for就可能一次都不执行。另外还要注意的是这三种循环都可以用break语句跳出循环,用continue语句结束本次循环,而goto语句与if构成的循环,是不能用break和 continue语句进行控制的。

顺序结构、分支结构和循环结构并不彼此孤立的,在循环中可以有分支、顺序结构,分支中也可以有循环、顺序结构,其实不管哪种结构,我们均可广义的把它们看成一个语句。在实际编程过程中常将这三种结构相互结合以实现各种算法,设计出相应程序,但是要编程的问题较大,编写出的程序就往往很长、结构重复多,造成可读性差,难以理解,解决这个问题的方法是将C程序设计成模块化结构。

(4)模块化程序结构

C语言的模块化程序结构用函数来实现,即将复杂的C程序分为若干模块,每个模块都编写成一个C函数,然后通过主函数调用函数及函数调用函数来实现一大型问题的C程序编写,因此常说:C程序=主函数+子函数。 因此,对函数的定义、调用、值的返回等中要尤其注重理解和应用,并通过上机调试加以巩固。

三.掌握一些简单的算法

编程其实一大部分工作就是分析问题,找到解决问题的方法,再以相应的编程语言写出代码。这就要求掌握算法,根据我们的《C程序设计》教学大纲中,只要求我们掌握一些简单的算法,在掌握这些基本算法后,要完成对问题的分析就容易了。如两个数的交换、三个数的比较、选择法排序和冒泡法排序,这就要求我们要清楚这些算法的内在含义

结语:当我们把握好上述几方面后,只要同学们能克服畏难、厌学、上课能专心听讲,做好练习与上机调试,其实C语言并不难学

怎样进行大数据的入门级学习?

文 | 郭小贤

数据科学并没有一个独立的学科体系,统计学,机器学习,数据挖掘,数据库,分布式计算,云计算,信息可视化等技术或方法来对付数据。

但从狭义上来看,我认为数据科学就是解决三个问题:

1. datapre-processing;(数据预处理)

2. datainterpretation;(数据解读)

3.datamodeling and analysis.(数据建模与分析)

这也就是我们做数据工作的三个大步骤:

1、原始数据要经过一连串收集、提取、清洗、整理等等的预处理过程,才能形成高质量的数据;

2、我们想看看数据“长什么样”,有什么特点和规律;

3、按照自己的需要,比如要对数据贴标签分类,或者预测,或者想要从大量复杂的数据中提取有价值的且不易发现的信息,都要对数据建模,得到output。

这三个步骤未必严谨,每个大步骤下面可能依问题的不同也会有不同的小步骤,但按我这几年的经验来看,按照这个大思路走,数据一般不会做跑偏。

这样看来,数据科学其实就是门复合型的技术,既然是技术就从编程语言谈起吧,为了简练,只说说R和Python。但既然是荐数据科学方面的书,我这里就不提R/Python编程基础之类的书了,直接上跟数据科学相关的。

R programming

如果只是想初步了解一下R语言已经R在数据分析方面的应用,那不妨就看看这两本:

R inaction:我的R语言大数据101。其实对于一个没有任何编程基础的人来说,一开始就学这本书,学习曲线可能会比较陡峭。但如果配合上一些辅助材料,如官方发布的R basics(http://cran.r-project.org/doc/contrib/usingR.pdf),stackoverflow上有tag-R的问题集(Newest ‘r’ Questions),遇到复杂的问题可在上面搜索,总会找到解决方案的。这样一来,用这本书拿来入门学习也问题不大。而且这本书作者写得也比较轻松,紧贴实战。

Dataanalysis and graphics using R:使用R语言做数据分析的入门书。这本书的特点也是紧贴实战,没有过多地讲解统计学理论,所以喜欢通过情境应用来学习的人应该会喜欢这本入门书。而且这本书可读性比较强,也就是说哪怕你手头没电脑写不了代码,有事没事拿出这本书翻一翻,也能读得进去。

但如果你先用R来从事实实在在的数据工作,那么上面两本恐怕不够,还需要这些:

Modernapplied statistics with S:这本书里统计学的理论就讲得比较多了,好处就是你可以用一本书既复习了统计学,又学了R语言。(S/Splus和R的关系就类似于Unix和Linux,所以用S教程学习R,一点问题都没有)

Datamanipulation with R:这本书实务性很强,它教给你怎么从不同格式的原始数据文件里读取、清洗、转换、整合成高质量的数据。当然和任何一本注重实战的书一样,本书也有丰富的真实数据或模拟数据供你练习。对于真正从事数据处理工作的人来说,这本书的内容非常重要,因为对于任何研究,一项熟练的数据预处理技能可以帮你节省大量的时间和精力。否则,你的研究总是要等待你的数据。

RGraphics Cookbook:想用R做可视化,就用这本书吧。150多个recipes,足以帮你应付绝大多数类型的数据。以我现在极业余的可视化操作水平来看,R是最容易做出最漂亮的图表的工具了。

Anintroduction to statistical learning with application in R:这本书算是著名的the element of statistical learning的姊妹篇,后者更注重统计(机器)学习的模型和算法,而前者所涉及的模型和算法原没有后者全面或深入,但却是用R来学习和应用机器学习的很好的入口。

Ahandbook of statistical analysis using R:这本书内容同样非常扎实,很多统计学的学生就是用这本书来学习用R来进行统计建模的。

Python

Think Python,ThinkStats,Think Bayes:这是AllenB. Downey写的著名的Think X series三大卷。其实是三本精致的小册子,如果想快速地掌握Python在统计方面的操作,好好阅读这三本书,认真做习题,答案链接在书里有。这三本书学通了,就可以上手用Python进行基本的统计建模了。

PythonFor Data Analysis: 作者是pandas的主要开发者,也正是Pandas使Python能够像R一样拥有dataframe的功能,能够处理结构比较复杂的数据。这本书其实analysis讲得不多,说成数据处理应该更合适。掌握了这本书,处理各种糟心的数据就问题不大了。

Introductionto Python for Econometrics, Statistics and DataAnalysis:这本书第一章就告诉你要安装Numpy, Scipy, Matplotlib, Pandas, IPython等等。然后接下来的十好几章就是逐一介绍这几个库该怎么用。很全面,但读起来比较枯燥,可以用来当工具书。

PracticalData Analysis: 这本书挺奇葩,貌似很畅销,但作者把内容安排得东一榔头西一棒子,什么都讲一点,但一个都没讲透。这本书可以作为我们学习数据分析的一个索引,看到哪块内容有意思,就顺着它这个藤去摸更多的瓜。

PythonData Visualization Cookbook: 用Python做可视化的教材肯定不少,我看过的也就这一本,觉得还不错。其实这类书差别都不会很大,咬住一本啃下来就是王道。

Exploratory Data Analysis 和 Data Visualization

Exploratory DataAnalysis:John Tukey写于1977年的经典老教材,是这一领域的开山之作。如今EDA已经是统计学里的重要一支,但当时还是有很多人对他的工作不屑一顾。可他爱数据,坚信数据可以以一种出人意料的方式呈现出来。正是他的努力,让数据可视化成为一门无比迷人的技术。但这本书不推荐阅读了,内容略过时。要想完整地了解EDA,推荐下一本:

ExploratoryData Analysis with MATLAB:这本书虽然标题带了个MATLAB,但实际上内容几乎没怎么讲MATLAB,只是每讲一个方法的时候就列出对应的MATALB函数。这本书的重要之处在于,这是我读过的讲EDA最系统的一本书,除了对visualization有不输于John Tucky的讲解外,对于高维的数据集,通过怎样的方法才能让我们从中找到潜在的pattern,这本书也做了详尽的讲解。全书所以案例都有对应的MATALB代码,而且还提供了GUI(图形用户界面)。所以这本书学起来还是相当轻松愉悦的。

VisualizeThis:中译本叫“鲜活的数据”,作者是个“超级数据迷”,建立了一个叫http://flowingdata.com的网页展示他的数据可视化作品,这本书告诉你该选择什么样的可视化工具,然后告诉你怎样visualize关系型数据、时间序列、空间数据等,最后你就可以用数据讲故事了。如果你只想感受一下数据可视化是个什么,可以直接点开下面这个链接感受下吧!A tour through the visualization zoo(A TourThrough the Visualization Zoo)

Machine Learning &Data Mining

这一块就不多说了,不是因为它不重要,而是因为它太太太重要。所以这一部分就推两本书,都是”世界名著“,都比较难读,需要一点点地啃。这两本书拿下,基本就算是登堂入室了。其实作为机器学习的延伸和深化,概率图模型(PGM)和深度学习(deep learning)同样值得研究,特别是后者现在简直火得不得了。但PGM偏难,啃K.Daphne那本大作实在太烧脑,也没必要,而且在数据领域的应用也不算很广。deep learning目前工业界的步子迈得比学术界的大,各个domain的应用如火如荼,但要有公认的好教材问世则还需时日,所以PGM和deep learning这两块就不荐书了。

TheElement of Statistical Learning:要学机器学习,如果让我只推荐一本书,我就推荐这本巨著。Hastie、Tibshirani、Friedman这三位大牛写书写得太用心了,大厦建得够高够大,结构也非常严谨,而且很有前瞻性,纳入了很多前沿的内容,而不仅仅是一部综述性的教材。(图表也做得非常漂亮,应该是用R语言的ggplot2做的。)这本书注重讲解模型和算法本身,所以需要具备比较扎实的数理基础,啃起这本书来才不会太吃力。事实上掌握模型和算法的原理非常重要。机器学习(统计学习)的库现在已经非常丰富,即使你没有完全搞懂某个模型或算法的原理和过程,只要会用那几个库,机器学习也能做得下去。但你会发现你把数据代进去,效果永远都不好。但是,当你透彻地理解了模型和算法本身,你再调用那几个库的时候,心情是完全不一样的,效果也不一样。

DataMining: Concepts and Techniques, by Jiawei Han and Micheline Kamber 数据挖掘的教材汗牛充栋,之所以推荐这本韩家炜爷爷的,是因为虽然他这本书的出发点是应用,但原理上的内容也一点没有落下,内容非常完整。而且紧跟时代,更新的很快,我看过的是第二版,就已经加进去了social network analysis这种当时的前沿内容。现在已经有第三版了,我还没看过,但应该也加入了不少新内容。其实这本书并不难读,只是篇幅较长,啃起来比较耗时。

其实这两本书里单拎出来一块内容可能又是几本书的节奏,比如bayesian方法,再拿出两三本书来讲也不为过,我个人用到的比较多,而且也确实有不少好书。但并非是所有data scientist都要用到,所以这一块就不再细说。

还有一些印象比较深刻的书:

Big DataGlossary: 主要讲解大数据处理技术及工具,内容涵盖了NoSQL,MapReduce,Storage,Servers,NLP库与工具包,机器学习工具包,数据可视化工具包,数据清洗,序列化指南等等。总之,是一本辞典式的大数据入门指导。

Mining ofMassive Datasets:这本书是斯坦福大学Web Mining的讲义,里面很多内容与韩家炜的Data Mining那本书重合,但这本书里详细地讲了MapReduce的设计原理,PageRank(Google创业时期的核心排序算法,现在也在不断优化更新)讲解得也比较详细。

DevelopingAnalytic Talent: 作者是个从事了十几年数据工作的geek,技术博客写得很有个人风格,写的内容都比较偏门,通常只有具备相关数据处理经验的人能体会出来,丝毫不照顾初学者的感受。比如他会谈到当数据流更新太快时该怎么办,或者MapReduce在什么时候不好用的问题,才不管你懂不懂相关基础原理。所以这本书不太适合初学者阅读。这本书其实是作者的博客文章的集结,用how to become a data scientist的逻辑把他近几年的博客文章串联了起来。

Past, Present and Future of Statistical Science:这本书是由COPSS(统计学社主席委员会,由国际各大统计学会的带头人组成)在50周年出版的一本纪念册,里面有50位统计学家每人分别贡献出的一两篇文章,有的回忆了自己当年如何走上统计学这条路,有的探讨了一些统计学的根本问题,有的谈了谈自己在从事的前沿研究,有的则给年轻一代写下了寄语。非常有爱的一本书。

其它资料

Harvard Data Science:这是H大的Data science在线课,我没有修过,但口碑很好。这门课需要费用8千刀左右,比起华盛顿大学的4千刀的Data science在线课虽贵一倍,但比斯坦福的14千刀要便宜将近一半(而且斯坦福的更偏计算机)。如果想自学,早有好心人分享了slides:(https://drive.google.com/folderview?id=0BxYkKyLxfsNVd0xicUVDS1dIS0k&usp=sharing)和homeworks and solutions: (https://github.com/cs109/content)

PyData:PyData是来自各个domain的用Python做数据的人每年举行一次的聚会,期间会有各路牛人举行一些规模不大的seminar或workshop,有好心人已经把video上传到github,有兴趣的去认领吧(DataTau/datascience-anthology-pydata · GitHub)

工具

R/Python/MATLAB(必备):如果是做数据分析和模型开发,以我的观察来看,使用这三种工具的最多。R生来就是一个统计学家开发的软件,所做的事也自然围绕统计学展开。MATLAB虽然算不上是个专业的数据分析工具,但因为很多人不是专业做数据的,做数据还是为了自己的domain expertise(特别是科学计算、信号处理等),而MATLAB又是个强大无比的Domain expertise工具,所以很多人也就顺带让MATLAB也承担了数据处理的工作,虽然它有时候显得效率不高。Python虽然不是做数据分析的专业软件,但作为一个面向对象的高级动态语言,其开源的生态使Python拥有无比丰富的库,Numpy, Scipy 实现了矩阵运算/科学计算,相当于实现了MATLAB的功能,Pandas又使Python能够像R一样处理dataframe,scikit-learn又实现了机器学习。

SQL(必备):虽然现在人们都说传统的关系型数据库如Oracle、MySQL越来越无法适应大数据的发展,但对于很多人来说,他们每天都有处理数据的需要,但可能一辈子都没机会接触TB级的数据。不管怎么说,不论是用关系型还是非关系型数据库,SQL语言是必须要掌握的技能,用什么数据库视具体情况而定。

MongoDB(可选):目前最受欢迎的非关系型数据库NoSQL之一,不少人认为MongoDB完全可以取代mySQL。确实MongoDB方便易用,扩展性强,Web2.0时代的必需品。

Hadoop/Spark/Storm(可选): MapReduce是当前最著名也是运用最广泛的分布式计算框架,由Google建立。Hadoop/Spark/storm都是基于MapReduce的框架建立起来的分布式计算系统,要说他们之间的区别就是,Hadoop用硬盘存储数据,Spark用内存存储数据,Storm只接受实时数据流而不存储数据。一言以蔽之,如果数据是离线的,如果数据比较复杂且对处理速度要求一般,就Hadoop,如果要速度,就Spark,如果数据是在线的实时的流数据,就Storm。

OpenRefine(可选):Google开发的一个易于操作的数据清洗工具,可以实现一些基本的清洗功能。

Tableau(可选):一个可交互的数据可视化工具,操作简单,开箱即用。而且图表都设计得非常漂亮。专业版1999美刀,终身使用。媒体和公关方面用得比较多。

Gephi(可选):跟Tableau类似,都是那种可交互的可视化工具,不需要编程基础,生成的图表在美学和设计上也是花了心血的。更擅长复杂网络的可视化。

来自知乎

以上是小编为大家分享的关于怎样进行大数据的入门级学习?的相关内容,更多信息可以关注环球青藤分享更多干货

数据科学并没有一个独立的学科体系,统计学,机器学习,数据挖掘,数据库,分布式计算,云计算,信息可视化等技术或方法来对付数据。但从狭义上来看,孙大圣威客认为数据科学就是解决三个问题:

1. data pre-processing

2. data interpretation;

3.data modeling and analysis.

这也就是我们做数据工作的三个大步骤:

1、原始数据要经过一连串收集、提取、清洗、整理等等的预处理过程,才能形成高质量的数据;

2、我们想看看数据“长什么样”,有什么特点和规律;

3、按照自己的需要,比如要对数据贴标签分类,或者预测,或者想要从大量复杂的数据中提取有价值的且不易发现的信息,都要对数据建模,得到output。

这三个步骤未必严谨,每个大步骤下面可能依问题的不同也会有不同的小步骤,但按我这几年的经验来看,按照这个大思路走,数据一般不会做跑偏。

这样看来,数据科学其实就是门复合型的技术,既然是技术就从编程语言谈起吧,为了简练,只说说R和Python。但既然是荐数据科学方面的书,我这里就不提R/Python编程基础之类的书了,直接上跟数据科学相关的。

R programming

如果只是想初步了解一下R语言已经R在数据分析方面的应用,那不妨就看看这两本:

R in action:我的R语言大数据101。其实对于一个没有任何编程基础的人来说,一开始就学这本书,学习曲线可能会比较陡峭。但如果配合上一些辅助材料,如官方发布的R basics,stackoverflow上有tag-R的问题集(Newest 'r' Questions),遇到复杂的问题可在上面搜索,总会找到解决方案的。这样一来,用这本书拿来入门学习也问题不大。而且这本书作者写得也比较轻松,紧贴实战。

Data analysis and graphics using R:使用R语言做数据分析的入门书。这本书的特点也是紧贴实战,没有过多地讲解统计学理论,所以喜欢通过情境应用来学习的人应该会喜欢这本入门书。而且这本书可读性比较强,也就是说哪怕你手头没电脑写不了代码,有事没事拿出这本书翻一翻,也能读得进去。

但如果你先用R来从事实实在在的数据工作,那么上面两本恐怕不够,还需要这些:

Modern applied statistics with S:这本书里统计学的理论就讲得比较多了,好处就是你可以用一本书既复习了统计学,又学了R语言。(S/Splus和R的关系就类似于Unix和Linux,所以用S教程学习R,一点问题都没有)

Data manipulation with R:这本书实务性很强,它教给你怎么从不同格式的原始数据文件里读取、清洗、转换、整合成高质量的数据。当然和任何一本注重实战的书一样,本书也有丰富的真实数据或模拟数据供你练习。对于真正从事数据处理工作的人来说,这本书的内容非常重要,因为对于任何研究,一项熟练的数据预处理技能可以帮你节省大量的时间和精力。否则,你的研究总是要等待你的数据。

R Graphics Cookbook:想用R做可视化,就用这本书吧。150多个recipes,足以帮你应付绝大多数类型的数据。以我现在极业余的可视化操作水平来看,R是最容易做出最漂亮的图表的工具了。

An introduction to statistical learning with application in R:这本书算是著名的the element of statistical learning的姊妹篇,后者更注重统计(机器)学习的模型和算法,而前者所涉及的模型和算法原没有后者全面或深入,但却是用R来学习和应用机器学习的很好的入口。

A handbook of statistical analysis using R:这本书内容同样非常扎实,很多统计学的学生就是用这本书来学习用R来进行统计建模的。