R语言可视化通路富集网络图

Python036

R语言可视化通路富集网络图,第1张

我们输入的数据包含 gene ID 和 vector(单样本)部分,这里的 gene ID 是一个通用概念,可以是基因、转录本、酶或蛋白质。这里的 vector 可以是样本的表达量、倍数变化, p-value, 组蛋白修饰数据等可测量的属性。下面我们以一个 RNA-seq 差异分析后的数据为例,来学习 pathview 的用法。

在 KEGG PATHWAY Database 查询,例如查询小鼠的"Cell Cycle"这条通路:

得到通路 ID 为"04110",物种为"mmu"

我们通过指定 gene.data pathway.id 来观察我们数据里的基因在信号通路“Pathways in cancer”上的表达变化:

相比于原始的 KEGG 图,我们可以使用 graphviz 产生一个新的布局,并且输出 PDF 格式的文件:

以下是输出结果图

如果我们想要运行的更快一点,并且不介意输出图片的大小,我们可以分图层,用 same.layer = F 将节点颜色和标签添加到另一个图层中,并且原来的 KEGG 基因标签会变成官方的 gene symbols :

在此基础上,修改 kegg.native = FALSE ,我们就可以得到一个主图与图例分成两个页面的 PDF 文件

在原始的 KEGG 视图中,一个基因节点可能代表具有相似或者冗余功能的基因/蛋白质,我们可以将这种包含多个基因的节点拆分成独立的节点,这样可以更好的从基因层面而不是节点层面来查看数据。同时也可以通过汇总基因数据来可视化节点数据:

为了画面有更好的清晰度和可读性,默认不分裂节点,也不单独标记每个成员基因。

代谢途径中,除了基因节点还有化合物节点,我们可以尝试利用代谢途径( Propanoate metabolism)整合基因数据和化合物数据。这里的化合物数据包括代谢物、药物,对它们的测量和它们的属性。在这里我们仍然使用之前 RNA-seq 差异分析的数据作为 gene data,然后,我们生成模拟化合物或代谢组数据,并加载适当的化合物 ID 类型以进行演示:

结果如下

pathview 可以集成并将多个样本或状态绘制成一个图,我们可以使用多个重复样本模拟化合物数据:

结果如下,可以看到基因节点和化合物节点被分成多份,对应不同的样本:

我们可以根据将化合物数据分为绝对值大于 5 和小于 5 两类,构成一组离散型数据:

结果如下:

Pathview 包中的主函数是 pathview() ,有着各种参数,是我们用到最多的函数。在这篇文章中,我们介绍了 pathview()的比较常见的用法,包括包安装,数据准备,以及其他有用的特性。我们也可以使用 pathxiew 的网页版,地址是 https://pathview.uncc.edu/ 。此外,Pathview 在数据整合方面有很强大的功能,包含 4800 个物种,能处理的数据属性和格式包括 连续/离散数据、矩阵/矢量、单个/多个样本数据 ,包中还具有强大的 ID 转换功能,这些都值得我们进一步探索。

生活很好,有你更好

前情回顾:

Gephi网络图极简教程

Network在单细胞转录组数据分析中的应用

Gephi网络图极简教程

Network在单细胞转录组数据分析中的应用

网络数据统计分析笔记|| 为什么研究网络

网络数据统计分析笔记|| 操作网络数据

网络数据统计分析笔记|| 网络数据可视化

网络数据统计分析笔记|| 网络数据的描述性分析

在前面的章节中我们了解到网络图的构建,可视化,以及网络结构的特征化描述。从本章开始,我们将进入网络图建模的主题,在网络数据分析中构建与使用模型。本章主要介绍几种常见的数学模型,就像我们在学统计建模的时候,先要学习几个常见的分布模型一样。关于统计建模的一般性描述见 环境与生态统计:R语言应用 。

所谓的网络图模型是指:

其中 是所有可能的图的集合, 是 上的一个概率分布, 是参数构成的向量,该向量的所有可能取值为 。

在随机图模型(Random graphs)中,我们模仿这样的一个环境,假如一个团体中有很多的个体,之后两个人随机的认识并且成为朋友,那么随着时间的推移,这个团体会变成什么样子呢?或者说这个以人为节点,边代表好友关系的网络会是什么样子的呢?

正式地讲,随机图模型通常是指一个给定了集合 及其上的均匀概率分布 的模型。其重要作用和完备性就像统计建模中的均匀分布一样。

比较常见的随机网路模型是Erdos-Renyi model,可以通过 sample_gnp 来构建。

查看图中组件和团的情况

可以看到我们生成的随机图不是连通的,有一个 巨型组件。

经典随机网络的性质包括:平均度与期望值比较接近,度分布均匀,节点对之间最短路径上的节点相对较少等。

广义随机图模型是经典随机图模型的一般化,具体地:

在Erdos-Renyi模型之外,最常选择的特征是固定度序列。假设对于节点数为8,一半节点的度为2,另4个节点的度为3,从满足条件的图集合中均匀抽取两个。

可见两个图并非同构。

我们可以从构建一个与已知图序列相同的图:

模拟图直径减少一半,之前的聚类也减少了。

随机图模型为我们描述了在不受任何条件控制的条件下的图,可理解为数学模型的背景模型,但是现实世界里的图往往是由特定结构的。基于机制的网络图模型 把我们带入了现实世界。其中最著名的需要所小世界模型了。

小世界模型最经典的特征是既具有规则网络的高聚集性,又具有类似随机网络的小直径。相较随机图模型,小世界模型能够更好地反映真实网络的情况。就像我们人类社会一样,人以群分,六度分隔。

例如在写本笔记的时候:

媒体经常提到COVID-19呼吸道疾病的病例和死亡人数呈“指数”增长,但这些数字暗示了其他东西,一个可能具有幂律属性的“小世界”网络。这将大大不同于疾病的指数增长路径。

在介绍随机网络时提到,随机网络无法解释真实网络中存在的一些情况:局部集聚(较高的集聚系数)和三元闭合(朋友的朋友是朋友)。从网络结构来看,随机网络与真实网络的一大差异便是过低的集聚系数,所以在随机网络模型基础上进行改进时,需要要着重考虑的便是——如何在保留小网络直径这一特点的同时提高集聚系数,使得构建的模型能够对网络局部结构进行更好的刻画。

小世界的性质:

优先连接”(preferential attachment)指的是进入一个网络的新节点倾向于与节点度高的节点相连接。反过来说,一个节点如果已经接受了很多连接,那么它就越容易被新来的节点所连接。

优先连接现象最早是在1925年,由英国统计学家George Udny Yule研究的。后来科学计量之父Derek J. de Solla Price在1976年也研究了这一现象,并把它叫做积累优势(cumulative advantage)。不过,描述优先连接最著名的模型是Albert-Laszlo Barabasi和Reka Albert提出的,所以也被叫做Barabási–Albert模型或BA模型。它的基本形式非常简明:一个新的节点i连接到网络里某个已有节点j的概率,就是节点j的度占全部已有节点的度之和的比重。

BA模型的节点度符合幂律分布,生成的是一个无标度网络(scale-free network)。

网络无标度性的形成有两个基本的要素:一是网络生长,也就是新的节点加入网络的过程;二是网络生长过程当中的优先连接。

ba网络的性质

如开头所言,随机网络作为网络的背景,它经常用来评估网络特征的显著性:即,待观测的网络与随机网络有多大程度的不一样?

假设我们有一个来自某种观测的图,此处称为 ,而我们对某些结构特征感兴趣,不妨称为 。在很多情况下,自然会考虑 是否是显著的,即在某种意义上是不寻常的和超预期的。这一过程很像我们的统计推断过程 统计推断概述 。

生成参考分布

而真实的我们数据的社团数是:

可以说是很显著的了。这时,你要问为什么?

评估小世界性的一种经典方法是:针对待观测网络以及可能观测到的/经过适当修饰的经典随机图,比较两者聚类系数和平均(最短)路径的长度。如果出现小世界性:

评估有向图的小世界性:

0.5501073 >0.2548 2.148485 >1.858 具有一定程度的小世界性质。

https://zhuanlan.zhihu.com/p/146499763

https://zhuanlan.zhihu.com/p/205012648

https://blog.csdn.net/limiyudianzi/article/details/81632139

http://economics.mit.edu/files/4623#:~:text=Generalized%20random%20graph%20models%20%28such%20as%20the%20con,combines%20high%20clustering%20with%20short%20path%20lengths%20is

https://ocw.mit.edu/courses/economics/14-15j-networks-spring-2018/lecture-and-recitation-notes/MIT14_15JS18_lec12.pdf

https://zhuanlan.zhihu.com/p/37121528

https://www.zdnet.com/article/graph-theory-suggests-covid-19-might-be-a-small-world-after-all/

https://www.sohu.com/a/402313767_169228