R语言常用函数整理(基础篇)

Python020

R语言常用函数整理(基础篇),第1张

R语言常用函数整理本篇是基础篇,即R语言自带的函数。

vector:向量

numeric:数值型向量

logical:逻辑型向量

character;字符型向量

list:列表

data.frame:数据框

c:连接为向量或列表

length:求长度

subset:求子集

seq,from:to,sequence:等差序列

rep:重复

NA:缺失值

NULL:空对象

sort,order,unique,rev:排序

unlist:展平列表

attr,attributes:对象属性

mode,class,typeof:对象存储模式与类型

names:对象的名字属性

字符型向量 nchar:字符数

substr:取子串 format,formatC:把对象用格式转换为字符串

paste()、paste0()不仅可以连接多个字符串,还可以将对象自动转换为字符串再相连,另外还能处理向量。

strsplit:连接或拆分

charmatch,pmatch:字符串匹配

grep,sub,gsub:模式匹配与替换

complex,Re,Im,Mod,Arg,Conj:复数函数

factor:因子 codes:因子的编码 levels:因子的各水平的名字 nlevels:因子的水平个数 cut:把数值型对象分区间转换为因子

table:交叉频数表 split:按因子分组 aggregate:计算各数据子集的概括统计量 tapply:对“不规则”数组应用函数

dev.new() 新建画板

plot()绘制点线图,条形图,散点图.

barplot( ) 绘制条形图

dotchart( ) 绘制点图

pie( )绘制饼图.

pair( )绘制散点图阵

boxplot( )绘制箱线图

hist( )绘制直方图

scatterplot3D( )绘制3D散点图.

par()可以添加很多参数来修改图形

title( ) 添加标题

axis( ) 调整刻度

rug( ) 添加轴密度

grid( ) 添加网格线

abline( ) 添加直线

lines( ) 添加曲线

text( ) 添加标签

legend() 添加图例

+, -, *, /, ^, %%, %/%:四则运算 ceiling,floor,round,signif

1、round() #四舍五入

例:x <- c(3.1416, 15.377, 269.7)

round(x, 0) #保留整数位

round(x, 2) #保留两位小数

round(x, -1) #保留到十位

2、signif() #取有效数字(跟学过的有效数字不是一个意思)

例:略

3、trunc() #取整

floor() #向下取整

ceiling() #向上取整

例:xx <- c(3.60, 12.47, -3.60, -12.47)

trunc(xx)

floor(xx)

ceiling(xx)

max,min,pmax,pmin:最大最小值

range:最大值和最小值 sum,prod:向量元素和,积 cumsum,cumprod,cummax,cummin:累加、累乘 sort:排序 approx和approx fun:插值 diff:差分 sign:符号函数

abs,sqrt:绝对值,平方根

log, exp, log10, log2:对数与指数函数

sin,cos,tan,asin,acos,atan,atan2:三角函数

sinh,cosh,tanh,asinh,acosh,atanh:双曲函数

beta,lbeta,gamma,lgamma,digamma,trigamma,tetragamma,pentagamma,choose ,lchoose:与贝塔函数、伽玛函数、组合数有关的特殊函数

fft,mvfft,convolve:富利叶变换及卷积

polyroot:多项式求根

poly:正交多项式

spline,splinefun:样条差值

besselI,besselK,besselJ,besselY,gammaCody:Bessel函数

deriv:简单表达式的符号微分或算法微分

array:建立数组

matrix:生成矩阵

data.matrix:把数据框转换为数值型矩阵

lower.tri:矩阵的下三角部分

mat.or.vec:生成矩阵或向量

t:矩阵转置

cbind:把列合并为矩阵

rbind:把行合并为矩阵

diag:矩阵对角元素向量或生成对角矩阵

aperm:数组转置

nrow, ncol:计算数组的行数和列数

dim:对象的维向量

dimnames:对象的维名

rownames,colnames:行名或列名

%*%:矩阵乘法

crossprod:矩阵交叉乘积(内积)

outer:数组外积

kronecker:数组的Kronecker积

apply:对数组的某些维应用函数

tapply:对“不规则”数组应用函数

sweep:计算数组的概括统计量

aggregate:计算数据子集的概括统计量

scale:矩阵标准化

matplot:对矩阵各列绘图

cor:相关阵或协差阵

Contrast:对照矩阵

row:矩阵的行下标集

col:求列下标集

solve:解线性方程组或求逆

eigen:矩阵的特征值分解

svd:矩阵的奇异值分解

backsolve:解上三角或下三角方程组

chol:Choleski分解

qr:矩阵的QR分解

chol2inv:由Choleski分解求逆

><,>,<=,>=,==,!=:比较运算符 !,&,&&,|,||,xor():

逻辑运算符 logical:

生成逻辑向量 all,

any:逻辑向量都为真或存在真

ifelse():二者择一 match,

%in%:查找

unique:找出互不相同的元素

which:找到真值下标集合

duplicated:找到重复元素

optimize,uniroot,polyroot:一维优化与求根

if,else,

ifelse,

switch:

分支 for,while,repeat,break,next:

循环 apply,lapply,sapply,tapply,sweep:替代循环的函数。

function:函数定义

source:调用文件 ’

call:函数调用 .

C,.Fortran:调用C或者Fortran子程序的动态链接库。

Recall:递归调用

browser,debug,trace,traceback:程序调试

options:指定系统参数

missing:判断虚参是否有对应实参

nargs:参数个数 stop:终止函数执行

on.exit:指定退出时执行 eval,expression:表达式计算

system.time:表达式计算计时

invisible:使变量不显示

menu:选择菜单(字符列表菜单)

其它与函数有关的还有:

delay,

delete.response,

deparse,

do.call,

dput,

environment ,

formals,

format.info,

interactive,

is.finite,

is.function,

is.language,

is.recursive ,

match.arg,

match.call,

match.fun,

model.extract,

name,

parse 函数能将字符串转换为表达式expression

deparse 将表达式expression转换为字符串

eval 函数能对表达式求解

substitute,

sys.parent ,

warning,

machine

cat,print:显示对象

sink:输出转向到指定文件

dump,save,dput,write:输出对象

scan,read.table,readlines, load,dget:读入

ls,objects:显示对象列表

rm, remove:删除对象

q,quit:退出系统

.First,.Last:初始运行函数与退出运行函数。

options:系统选项

?,help,help.start,apropos:帮助功能

data:列出数据集

head()查看数据的头几行

tail()查看数据的最后几行

每一种分布有四个函数:

d―density(密度函数),p―分布函数,q―分位数函数,r―随机数函数。

比如,正态分布的这四个函数为dnorm,pnorm,qnorm,rnorm。下面我们列出各分布后缀,前面加前缀d、p、q或r就构成函数名:

norm:正态,

t:t分布,

f:F分布,

chisq:卡方(包括非中心)

unif:均匀,

exp:指数,

weibull:威布尔,

gamma:伽玛,

beta:贝塔

lnorm:对数正态,

logis:逻辑分布,

cauchy:柯西,

binom:二项分布,

geom:几何分布,

hyper:超几何,

nbinom:负二项,

pois:泊松

signrank:符号秩,

wilcox:秩和,

tukey:学生化极差

sum, mean, var, sd, min, max, range, median, IQR(四分位间距)等为统计量,

sort,order,rank与排序有关,

其它还有ave,fivenum,mad,quantile,stem等。

R中已实现的有chisq.test,prop.test,t.test。

cor,cov.wt,var:协方差阵及相关阵计算

biplot,biplot.princomp:多元数据biplot图

cancor:典则相关

princomp:主成分分析

hclust:谱系聚类

kmeans:k-均值聚类

cmdscale:经典多维标度

其它有dist,mahalanobis,cov.rob。

ts:时间序列对象

diff:计算差分

time:时间序列的采样时间

window:时间窗

lm,glm,aov:线性模型、广义线性模型、方差分析

quo()等价于quote()

enquo()等价于substitute()

ks.test()实现了KS检验,可以检验任意样本是不是来自给定的连续分布。

你这里的用法就是:

ks.test(data,pt,df=df) #data是样本的数据,df是要检验的t分布的自由度

我们可以用很多方法分析一个单变量数据集的分布。最简单的办法就是直接看数

字。利用函数summary 和fivenum 会得到两个稍稍有点差异的汇总信息。此外,stem

(\茎叶"图)也会反映整个数据集的数字信息。

>attach(faithful)

>summary(eruptions)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.600 2.163 4.000 3.488 4.454 5.100

>fivenum(eruptions)

[1] 1.6000 2.1585 4.0000 4.4585 5.1000

>stem(eruptions)

The decimal point is 1 digit(s) to the left of the |

16 | 070355555588

18 | 000022233333335577777777888822335777888

20 | 00002223378800035778

22 | 0002335578023578

24 | 00228

26 | 23

28 | 080

30 | 7

32 | 2337

34 | 250077

36 | 0000823577

38 | 2333335582225577

40 | 0000003357788888002233555577778

42 | 03335555778800233333555577778

44 | 02222335557780000000023333357778888

46 | 0000233357700000023578

48 | 00000022335800333

50 | 0370

茎叶图和柱状图相似,R 用函数hist 绘制柱状图。

>hist(eruptions)

>## 让箱距缩小,绘制密度图

>hist(eruptions, seq(1.6, 5.2, 0.2), prob=TRUE)

>lines(density(eruptions, bw=0.1))

>rug(eruptions) # 显示实际的数据点

更为精致的密度图是用函数density 绘制的。在这个例子中,我们加了一条

由density 产生的曲线。你可以用试错法(trial-and-error)选择带宽bw(bandwidth)

因为默认的带宽值让密度曲线过于平滑(这样做常常会让你得到非常有\意思"的密度

分布)。(现在已经有一些自动的带宽挑选方法2,在这个例子中bw = "SJ"给出的结

果不错。)

我们可以用函数ecdf 绘制一个数据集的经验累积分布(empirical cumulative

distribution)函数。

>plot(ecdf(eruptions), do.points=FALSE, verticals=TRUE)

显然,这个分布和其他标准分布差异很大。那么右边的情况怎么样呢,就是火山

爆发3分钟后的状况?我们可以拟合一个正态分布,并且重叠前面得到的经验累积密

度分布。

>long <- eruptions[eruptions >3]

>plot(ecdf(long), do.points=FALSE, verticals=TRUE)

>x <- seq(3, 5.4, 0.01)

>lines(x, pnorm(x, mean=mean(long), sd=sqrt(var(long))), lty=3)

分位比较图(Quantile-quantile (Q-Q) plot)便于我们更细致地研究二者的吻合

程度。

par(pty="s") # 设置一个方形的图形区域

qqnorm(long)qqline(long)

上述命令得到的QQ图表明二者还是比较吻合的,但右侧尾部偏离期望的正态分布。

我们可以用t 分布获得一些模拟数据以重复上面的过程

x <- rt(250, df = 5)

qqnorm(x)qqline(x)

这里得到的QQ图常常会出现偏离正态期望的长尾区域(如果是随机样本)。我们可以用

下面的命令针对特定的分布绘制Q-Q图

qqplot(qt(ppoints(250), df = 5), x, xlab = "Q-Q plot for t dsn")

qqline(x)

最后,我们可能需要一个比较正规的正态性检验方法。R提供了Shapiro-Wilk 检

>shapiro.test(long)

Shapiro-Wilk normality test

data: long

W = 0.9793, p-value = 0.01052

和Kolmogorov-Smirnov 检验

>ks.test(long, "pnorm", mean = mean(long), sd = sqrt(var(long)))

One-sample Kolmogorov-Smirnov test

data: long

D = 0.0661, p-value = 0.4284

alternative hypothesis: two.sided

(注意一般的统计分布理论(distribution theory)在这里可能无效,因为我们用同样

的样本对正态分布的参数进行估计的。)

转载于:

http://www.biostatistic.net/thread-2413-1-1.html