R语言得到了模型,怎么预测,比如我要预测2013时候的数据

Python018

R语言得到了模型,怎么预测,比如我要预测2013时候的数据,第1张

预测的话,应该用接下来的时间,所以应该是预测2014,2015....

程序如下:

new<-data.frame(year=2014)

lm.pred<-predict(z,new,interval="prediction",level=0.95)

lm.pred

解释:第一行表示输入新的点year=2014,注意,即使就一个点,也要采用数据框结构;第二行的函数predict()给出相应的预测值,参数interval="prediction"表示同时要给出相应的置信区间,参数level=0.95表示相应的概率为0.95.这个参数也可以不写,因为它的缺省值为0.95.

你提到的2013的数据不是预测,而是拟合。我们可以通过得到的模型对原来的year这个变量的数据进行拟合。

程序如下:

fit<-fitted(z)

fit

得到的就是在你得到的模型下2006-2013这8年的拟合值了。

希望能对你有所帮助~

本文分析利用IBM离职员工数据进行分析。在对离职率的影响因素进行观察的基础至上,建立模型并预测哪些员工更易离职。

一般而言,数据分析分为三个步骤:数据收集与清洗、探索性分析和建模预测。本文的数据集是IBM用于研究员工预测的 模拟数据 ,数据十分完整,无需清洗。因此,本文主要分为三个部分:

通过对IBM离职员工数据实践,本文希望发掘出影响员工流失的因素,并对利用R语言进行数据分析过程进行复习,深化对数据分析工作意义的理解。

IBM离职员工数据集共有35个变量,1470个观测个案。部分需要重点关注的变量如下:

上述变量可以分为三个部分:

载入分析包和数据集

通过描述性统计可以初步观测到:

分析结果:

基于对数据的探索性分析,员工离职有多方面因素的影响,主要有:

1.工作与生活的不平衡——加班、离家远和出差等;

2.工作投入如果不能获得相匹配的回报,员工更倾向离职;

3.优先股认购等福利是员工较为关注的回报形式;

4.年龄、任职过的公司数量的因素也会影响员工离职率;

删除需要的变量:EmployeeCount, EmployeeNumber, Over18, StandardHours

变量重新编码:JobRole, EducationFiled

分析结果表明:

随机森林所得的AUC值为0.5612,小于决策树模型。

GBM模型得到的AUC值为0.5915

对于对于随机森林和GBM的方法,AUC值小于单一决策树模型的AUC值的情况较少见,这显然说明单一的树拟合得更好或者更稳定的情况。(一般需要得到AUC值大于0.75的模型)

当结果分类变量之间的比列是1:10或者更高的时候,通常需要考虑优化模型。本例中,离职变量的比列是1:5左右,但仍然可能是合理的,因为在决策树中看到的主要问题是预测那些实际离开的人(敏感度)。

加权旨在降低少数群体中的错误,这里是离职群体。

向上采样(up-sampling)指从多数类中随机删除实例。

向下采样(down-sampling)指从少数类中复制实例。

分析结果表明:

加权调整的模型表现最好,相比较于单纯的随机森林和GBM模型,AUC值从0.5612上升至0.7803,灵敏度也达到了0.7276。据此,后续将采用加权调整后的模型进行预测。

已经训练出一个表现较好的模型。将其应用于实践时,需要注意以下几个方面:

可以观察到影响员工流失的前5个因素是:

因此,在实践中就需要注意:

本例中对工作投入高、收入低的员工进行预测。

本例分析仍有需要足够完善的地方,还可以往更多更有意义的地方探索:

数据集的行是游戏玩家们玩的每一次游戏,列是某个玩家玩游戏时的速度、能力和决策,都是数值型变量。

任务是根据这些表现的衡量指标来预测某个玩家当前被分配到8个联赛中的哪一个,输出变量(LeagueIndex)是一个有序的类别变量,序号从1到8,最后一个对应的是技术最高的玩家组成的联赛。

一种对待序号输出的可能方式是把它们当作一个数值型变量,作为回归任务来建模,并构建一个回归树。GameID列表示唯一的游戏标识符,跟模型无关,可以丢弃;另外TotalHours列被识别为字符型,需要修正为数值型。

Age、HoursPerWeek和TotalHours存在缺失值,直接删除带有缺失值的行。(虽然树模型可以自动处理缺失值,但是后面还会使用其他模型来对比,那些模型不一定能处理缺失值)

使用rpart包构建回归树模型。

对于输入特征,我们会关注它用在树里任何地方时产生的优化准则(例如偏差或SSE)里的约简,将树里所有分裂的这个量值汇总起来,就得到变量重要性的相对数量。

越重要的变量会越早用来分裂数据(离根节点更近),也会更常用到。如果一个变量从来没有用过,那么就是不重要的,通过这种方式,可以用来做特征选择,但是这种方法对特征中的相关性敏感。