学习Python需要掌握哪些技术

Python012

学习Python需要掌握哪些技术,第1张

Python学习路线。

第一阶段Python基础与Linux数据库。这是Python的入门阶段,也是帮助零基础学员打好基础的重要阶段。你需要掌握Python基本语法规则及变量、逻辑控制、内置数据结构、文件操作、高级函数、模块、常用标准库模块、函数、异常处理、MySQL使用、协程等知识点。

学习目标:掌握Python基础语法,具备基础的编程能力;掌握Linux基本操作命令,掌握MySQL进阶内容,完成银行自动提款机系统实战、英汉词典、歌词解析器等项目

第二阶段WEB全栈。这一部分主要学习Web前端相关技术,你需要掌握HTML、CSS、JavaScript、jQuery、BootStrap、Web开发基础、VUE、Flask Views、Flask模板、 数据库操作、Flask配置等知识。

学习目标:掌握WEB前端技术内容,掌握WEB后端框架,熟练使用Flask、Tornado、Django,可以完成数据监控后台的项目。

第三阶段数据分析+人工智能。这部分主要是学习爬虫相关的知识点,你需要掌握数据抓取、数据提取、数据存储、爬虫并发、动态网页抓取、scrapy框架、分布式爬虫、爬虫攻防、数据结构、算法等知识。

学习目标:可以掌握爬虫、数据采集,数据机构与算法进阶和人工智能技术。可以完成爬虫攻防、图片马赛克、电影推荐系统、地震预测、人工智能项目等阶段项目。

第四阶段高级进阶。这是Python高级知识点,你需要学习项目开发流程、部署、高并发、性能调优、Go语言基础、区块链入门等内容。

学习目标:可以掌握自动化运维与区块链开发技术,可以完成自动化运维项目、区块链等项目。

按照上面的Python学习路线图学习完后,你基本上就可以成为一名合格的Python开发工程师。当然,想要快速成为企业竞聘的精英人才,你需要有好的老师指导,还要有较多的项目积累实战经验。

自学本身难度较高,一步一步学下来肯定全面且扎实,如果自己有针对性的想学哪一部分,可以直接跳过暂时不需要的针对性的学习自己需要的模块,可以多看一些不同的视频学习。

将深度学习模型部署为exe需要工具主要包括生产环境下PyTorch模型转换、PyTorch模型转为C++模型、生产环境下TensorFlow模型转换、生产环境下Keras模型转换、生产环境下MXNet模型转换、基于Go语言的机器学习模型部署、通用深度学习模型部署工具箱、前端UI设计资源、移动端和嵌入式模型部署、后端开发部分、基于Python的代码优化和加速等。

论numpy中matrix 和 array的区别,有需要的朋友可以参考下。

Numpy matrices必须是2维的,但是numpy arrays (ndarrays) 可以是多维的(1D,2D,3D····ND). Matrix是Array的一个小的分支,包含于Array。所以matrix 拥有array的所有特性。

在numpy中matrix的主要优势是:相对简单的乘法运算符号。例如,a和b是两个matrices,那么a*b,就是矩阵积。

import numpy as np

a=np.mat('4 32 1')

b=np.mat('1 23 4')

print(a)

# [[4 3]

# [2 1]]

print(b)

# [[1 2]

# [3 4]]

print(a*b)

# [[13 20]

# [ 5 8]]

matrix 和 array 都可以通过在have.Tto

return the transpose, but matrix objects also have.Hfor

the conjugate transpose, and.Ifor

the inverse.

In contrast, numpy arrays consistently abide by the rule that

operations are applied element-wise. Thus, if a and b are numpy arrays,

then a*b is the array formed by multiplying the components element-wise:

c=np.array([[4, 3], [2, 1]])

d=np.array([[1, 2], [3, 4]])

print(c*d)

# [[4 6]

# [6 4]]

To obtain the result of matrix multiplication, you use np.dot :

print(np.dot(c,d))

# [[13 20]

# [ 5 8]]

The**operator

also behaves differently:

print(a**2)

# [[22 15]

# [10 7]]

print(c**2)

# [[16 9]

# [ 4 1]]

Sinceais

a matrix,a**2returns

the matrix producta*a.

Sincecis

an ndarray,c**2returns

an ndarray with each component squared element-wise.

There are other technical differences between matrix objects and

ndarrays (having to do with np.ravel, item selection and sequence

behavior).

The main advantage of numpy arrays is that they are more general

than 2-dimensional matrices. What happens when you want a 3-dimensional

array? Then you have to use an ndarray, not a matrix object. Thus,

learning to use matrix objects is more work -- you have

to learn matrix object operations, and ndarray operations.

Writing a program that uses both matrices and arrays makes your life

difficult because you have to keep track of what type of object your

variables are, lest multiplication return something you don't expect.

In contrast, if you stick solely with ndarrays, then you can do

everything matrix objects can do, and more, except with slightly

different functions/notation.

If you are willing to give up the visual appeal of numpy matrix

product notation, then I think numpy arrays are definitely the way to

go.

PS. Of course, you really don't have to choose one at the expense of the other, sincenp.asmatrixandnp.asarrayallow

you to convert one to the other (as long as the array is 2-dimensional).

One of the biggest practical differences for me of numpy ndarrays

compared to numpy matrices or matrix languages like matlab, is that the

dimension is not preserved in reduce operations. Matrices are always 2d,

while the mean of an array, for example, has one

dimension less.

For example demean rows of a matrix or array:

with matrix

>>>m = np.mat([[1,2],[2,3]])

>>>m

matrix([[1, 2],

[2, 3]])

>>>mm = m.mean(1)

>>>mm

matrix([[ 1.5],

[ 2.5]])

>>>mm.shape

(2, 1)

>>>m - mm

matrix([[-0.5, 0.5],

[-0.5, 0.5]])

with array

>>>a = np.array([[1,2],[2,3]])

>>>a

array([[1, 2],

[2, 3]])

>>>am = a.mean(1)

>>>am.shape

(2,)

>>>am

array([ 1.5, 2.5])

>>>a - am #wrong

array([[-0.5, -0.5],

[ 0.5, 0.5]])

>>>a - am[:, np.newaxis] #right

array([[-0.5, 0.5],

[-0.5, 0.5]])

I also think that mixing arrays and matrices gives rise to many

"happy" debugging hours. However, scipy.sparse matrices are always

matrices in terms of operators like multiplication.