用R语言实现遗传算法

Python011

用R语言实现遗传算法,第1张

模式识别的三大核心问题包括:

特征选择 特征变换 都能够达到降维的目的,但是两者所采用的方式方法是不同的。

特征提取 主要是通过分析特征间的关系,变换原来特征空间,从而达到压缩特征的目的。主要方法有:主成分分析(PCA)、离散K-L变换法(DKLT)等。

特征选择 选择方法是从原始特征集中挑选出子集,是原始特征的选择和组合,并没有更改原始特征空间,特征选择的过程必须确保不丢失重要特征。主要方法有:遗传算法(GA)、统计检验法、分支定界法等。

这里主要讲讲特征选择中 遗传算法 以及它的R语言实现(因为要写作业,虽然不一定写对了)。

遗传算法受进化论启发,根据“物竞天择,适者生存”这一规则,模拟自然界进化机制,寻找目标函数的最大值。

采用遗传算法对男女生样本数据中的身高、体重、鞋码、50m成绩、肺活量、是否喜欢运动共6个特征进行特征选择。

由于有6个特征,因此选用6位0/1进行编码,1表示选中该特征。

适应度函数的实现

示例

结果如下

有什么不对的地方欢迎大家在评论区指出。

基于R语言的分类算法之决策树

ID3 《= 最大信息熵增益,只能处理离散型数据

C4.5 《= 信息增益率,可处理连续性和离散型数据,相比ID3,减少了因变量过多导致的过拟合

C5.0 《= 信息增益率,运算性能比C4.5更强大

CART 《= 基尼指数最小原则,连续性和离散型数据均可

信息熵体现的是数据的杂乱程度,信息越杂乱,信息熵越大,反之越小。 例如:拥有四种连续型变量的特征变量的信息熵一定比拥有三种的要大。

特征变量的N种可能性,每种可能性的概率相同,N越大,信息熵越大。

每种可能性的概率不同,越偏态,信息熵越小。

所有特征变量中,信息增益率的,就是根节点(root leaf),根节点一般是选择N越大的特征变量,因为N越大,信息熵越大。

信息增益率是在信息熵的基础上作惩罚计算,避免特征变量可能性多导致的高信息增益。

代码相关

library(C50)

C5.0(x,y, trials = 1, rules=FALSE,weights=NULL,control=C5.0Control(),costs=NULL)

x为特征变量,y为应变量

trials 为迭代次数(这个值根据不同数据而不同,并非越大越好,一般介于5-15之间,可以用遍历来寻找最高准确率的模型,对模型准确率的提升效果中等)

cost 为损失矩阵,R中应该传入一个矩阵(据说是对准确率矩阵约束猜测错误的项,但是并没特别明显的规律,可以使用遍历来寻找最好的cost,准确率提升效果小)

costs <- matrix(c(1,2,1,2),

ncol = 2, byrow = TRUE,

dimnames = list(c("yes","no"), c("yes","no")))

control 设置C5.0模型的其他参数,比如置信水平和节点最小样本等(水很深,参数很多,可以自行查阅R的帮助文档,我只设置了一个CF,准确率提升效果小)

control = C5.0Control(CF = 0.25)

library(C50)

#对iris随机划分训练集和测试集

set.seed(1234)

index <- sample(1:nrow(iris), size = 0.75*nrow(iris))

train <- iris[index,]

test <- iris[-index,]

#查看训练集和测试集分布是否合理

prop.table(table(train$Species))

prop.table(table(test$Species))

#不设置任何参数

fit1 <- C5.0(x = train[,1:4], y = train[,5])

pred1 <- predict(fit1, newdata = test[,-5])

freq1 <- table(pred1, test[,5])

accuracy <- sum(diag(freq1))/sum(freq1)

pred1setosa versicolor virginica

setosa 16 0 0

versicolor 0 13 1

virginica 0 0 8

准确率为0.9736842,只有一个错误。。。显然150个iris太少了,优化都省了。