LMS算法与最陡下降法有何不同?

Python014

LMS算法与最陡下降法有何不同?,第1张

最陡下降法在迭代过程中与输入信号无关,不具有有对输入信号统计特性变化的自适应性,最陡下降法的互相关向量P和自相关矩阵R都是确定量,所以根据最陡下降法迭代式所得到的权向量w(n)也是确定的向量序列。所以,最陡下降法不是自适应算法

而LMS算法中的u(n)和e(n)都是随机过程,得到的w(n)也是随机过程向量。LMS算法是自适应算法。

% RLS算法

randn('seed', 0)

rand('seed', 0)

NoOfData = 8000 % Set no of data points used for training

Order = 32 % 自适应滤波权数

Lambda = 0.98 % 遗忘因子

Delta = 0.001 % 相关矩阵R的初始化

x = randn(NoOfData, 1) %高斯随机系列

h = rand(Order, 1) % 系统随机抽样

d = filter(h, 1, x) % 期望输出

% RLS算法的初始化

P = Delta * eye ( Order, Order ) %相关矩阵

w = zeros ( Order, 1 ) %滤波系数矢量的初始化

% RLS Adaptation

for n = Order : NoOfData

u = x(n:-1:n-Order+1) %延时函数

pi_ = u' * P %互相关函数

k = Lambda + pi_ * u

K = pi_'/k%增益矢量

e(n) = d(n) - w' * u %误差函数

w = w + K * e(n) %递归公式

PPrime = K * pi_

P = ( P - PPrime ) / Lambda %误差相关矩阵

w_err(n) = norm(h - w) %真实估计误差

end

% 作图表示结果

figure

plot(20*log10(abs(e))) %| e |的误差曲线

title('学习曲线')

xlabel('迭代次数')

ylabel('输出误差估计')

figure

semilogy(w_err) %作实际估计误差图

title('矢量估计误差')

xlabel('迭代次数')

ylabel('误差权矢量')

%lms 算法

clear all

close all

hold off%系统信道权数

sysorder = 5 %抽头数

N=1000%总采样次数

inp = randn(N,1)%产生高斯随机系列

n = randn(N,1)

[b,a] = butter(2,0.25)

Gz = tf(b,a,-1)%逆变换函数

h= [0.09760.28730.33600.22100.0964]%信道特性向量

y = lsim(Gz,inp)%加入噪声

n = n * std(y)/(10*std(n))%噪声信号

d = y + n%期望输出信号

totallength=size(d,1)%步长

N=60 %60节点作为训练序列

%算法的开始

w = zeros ( sysorder , 1 ) %初始化

for n = sysorder : N

u = inp(n:-1:n-sysorder+1) % u的矩阵

y(n)= w' * u%系统输出

e(n) = d(n) - y(n) %误差

if n <20

mu=0.32

else

mu=0.15

end

w = w + mu * u * e(n) %迭代方程

end

%检验结果

for n = N+1 : totallength

u = inp(n:-1:n-sysorder+1)

y(n) = w' * u

e(n) = d(n) - y(n) %误差

end

hold on

plot(d)

plot(y,'r')

title('系统输出')

xlabel('样本')

ylabel('实际输出')

figure

semilogy((abs(e))) % e的绝对值坐标

title('误差曲线')

xlabel('样本')

ylabel('误差矢量')

figure%作图

plot(h, 'k+')

hold on

plot(w, 'r*')

legend('实际权矢量','估计权矢量')

title('比较实际和估计权矢量')

axis([0 6 0.05 0.35])