478. 在圆内随机生成点(Python)

Python011

478. 在圆内随机生成点(Python),第1张

难度:★★☆☆☆

类型:几何

方法:拒绝采样

力扣链接请移步 本题传送门

更多力扣中等题的解决方案请移步 力扣中等题目录

给定圆的半径和圆心的 x、y 坐标,写一个在圆中产生均匀随机点的函数 randPoint 。

说明:

输入值和输出值都将是浮点数。

圆的半径和圆心的 x、y 坐标将作为参数传递给类的构造函数。

圆周上的点也认为是在圆中。

randPoint 返回一个包含随机点的x坐标和y坐标的大小为2的数组。

示例 1:

输入:

["Solution","randPoint","randPoint","randPoint"]

[[1,0,0],[],[],[]]

输出: [null,[-0.72939,-0.65505],[-0.78502,-0.28626],[-0.83119,-0.19803]]

示例 2:

输入:

["Solution","randPoint","randPoint","randPoint"]

[[10,5,-7.5],[],[],[]]

输出: [null,[11.52438,-8.33273],[2.46992,-16.21705],[11.13430,-12.42337]]

输入语法说明:

输入是两个列表:调用成员函数名和调用的参数。Solution 的构造函数有三个参数,圆的半径、圆心的 x 坐标、圆心的 y 坐标。randPoint 没有参数。输入参数是一个列表,即使参数为空,也会输入一个 [] 空列表。

我们在以圆心为中心,以二倍半径为边长的正方形内部进行随机选点,当点落在圆内或者圆上时,满足条件,返回该点。

我们可以把上面的直角坐标变换为极坐标,随机的选取角度和半径,生成的点一定在圆上或者圆内。这里需要注意,由于在平面维度是均匀采样的,生成随机半径时需要对结果开方。

如有疑问或建议,欢迎评论区留言~

有关更多力扣中等题的python解决方案,请移步 力扣中等题解析

0.导入需要的包import pandas as pd

import numpy as np

import statsmodels.api as sm #统计运算

import scipy.stats as scs #科学计算

import matplotlib.pyplot as plt #绘图

1.选取几只感兴趣的股票

000413 东旭光电,000063 中兴通讯,002007 华兰生物,000001 平安银行,000002 万科A

并比较一下数据(2015-01-01至2015-12-31)

In[1]:

stock_set = ['000413.XSHE','000063.XSHE','002007.XSHE','000001.XSHE','000002.XSHE']

noa = len(stock_set)

df = get_price(stock_set, start_date = '2015-01-01', end_date ='2015-12-31', 'daily', ['close'])

data = df['close']

#规范化后时序数据

(data/data.ix[0]*100).plot(figsize = (8,5))

Out[1]:

2.计算不同证券的均值、协方差

每年252个交易日,用每日收益得到年化收益。计算投资资产的协方差是构建资产组合过程的核心部分。运用pandas内置方法生产协方差矩阵。

In [2]:

returns = np.log(data / data.shift(1))

returns.mean()*252

Out[2]:

000413.XSHE0.184516

000063.XSHE0.176790

002007.XSHE0.309077

000001.XSHE -0.102059

000002.XSHE0.547441

In [3]:

returns.cov()*252

Out[3]:

3.给不同资产随机分配初始权重

由于A股不允许建立空头头寸,所有的权重系数均在0-1之间

In [4]:

weights = np.random.random(noa)

weights /= np.sum(weights)

weights

Out[4]:

array([ 0.37505798, 0.21652754, 0.31590981, 0.06087709, 0.03162758])

4.计算预期组合年化收益、组合方差和组合标准差

In [5]:

np.sum(returns.mean()*weights)*252

Out[5]:

0.21622558669017816

In [6]:

np.dot(weights.T, np.dot(returns.cov()*252,weights))

Out[6]:

0.23595133640121463

In [7]:

np.sqrt(np.dot(weights.T, np.dot(returns.cov()* 252,weights)))

Out[7]:

0.4857482232609962

5.用蒙特卡洛模拟产生大量随机组合

进行到此,我们最想知道的是给定的一个股票池(证券组合)如何找到风险和收益平衡的位置。

下面通过一次蒙特卡洛模拟,产生大量随机的权重向量,并记录随机组合的预期收益和方差。

In [8]:

port_returns = []

port_variance = []

for p in range(4000):

weights = np.random.random(noa)

weights /=np.sum(weights)

port_returns.append(np.sum(returns.mean()*252*weights))

port_variance.append(np.sqrt(np.dot(weights.T, np.dot(returns.cov()*252, weights))))

port_returns = np.array(port_returns)

port_variance = np.array(port_variance)

#无风险利率设定为4%

risk_free = 0.04

plt.figure(figsize = (8,4))

plt.scatter(port_variance, port_returns, c=(port_returns-risk_free)/port_variance, marker = 'o')

plt.grid(True)

plt.xlabel('excepted volatility')

plt.ylabel('expected return')

plt.colorbar(label = 'Sharpe ratio')

Out[8]:

6.投资组合优化1——sharpe最大

建立statistics函数来记录重要的投资组合统计数据(收益,方差和夏普比)

通过对约束最优问题的求解,得到最优解。其中约束是权重总和为1。

In [9]:

def statistics(weights):

weights = np.array(weights)

port_returns = np.sum(returns.mean()*weights)*252

port_variance = np.sqrt(np.dot(weights.T, np.dot(returns.cov()*252,weights)))

return np.array([port_returns, port_variance, port_returns/port_variance])

#最优化投资组合的推导是一个约束最优化问题

import scipy.optimize as sco

#最小化夏普指数的负值

def min_sharpe(weights):

return -statistics(weights)[2]

#约束是所有参数(权重)的总和为1。这可以用minimize函数的约定表达如下

cons = ({'type':'eq', 'fun':lambda x: np.sum(x)-1})

#我们还将参数值(权重)限制在0和1之间。这些值以多个元组组成的一个元组形式提供给最小化函数

bnds = tuple((0,1) for x in range(noa))

#优化函数调用中忽略的唯一输入是起始参数列表(对权重的初始猜测)。我们简单的使用平均分布。

opts = sco.minimize(min_sharpe, noa*[1./noa,], method = 'SLSQP', bounds = bnds, constraints = cons)

opts

Out[9]:

status: 0

success: True

njev: 4

nfev: 28

fun: -1.1623048291871221

x: array([ -3.60840218e-16, 2.24626781e-16, 1.63619563e-01,-2.27085639e-16, 8.36380437e-01])

message: 'Optimization terminated successfully.'

jac: array([ 1.81575805e-01, 5.40387481e-01, 8.18073750e-05, 1.03137662e+00, -1.60038471e-05, 0.00000000e+00])

nit: 4

得到的最优组合权重向量为:

In [10]:

opts['x'].round(3)

Out[10]:

array([-0. , 0. , 0.164, -0. , 0.836])

sharpe最大的组合3个统计数据分别为:

In [11]:

#预期收益率、预期波动率、最优夏普指数

statistics(opts['x']).round(3)

Out[11]:

array([ 0.508, 0.437, 1.162])

7.投资组合优化2——方差最小

接下来,我们通过方差最小来选出最优投资组合。

In [12]:

#但是我们定义一个函数对 方差进行最小化

def min_variance(weights):

return statistics(weights)[1]

optv = sco.minimize(min_variance, noa*[1./noa,],method = 'SLSQP', bounds = bnds, constraints = cons)

optv

Out[12]:

status: 0

success: True

njev: 7

nfev: 50

fun: 0.38542969450547221

x: array([ 1.14787640e-01, 3.28089742e-17, 2.09584008e-01, 3.53487044e-01, 3.22141307e-01])

message: 'Optimization terminated successfully.'

jac: array([ 0.3851725 , 0.43591119, 0.3861807 , 0.3849672 , 0.38553924, 0.])

nit: 7

方差最小的最优组合权重向量及组合的统计数据分别为:

In [13]:

optv['x'].round(3)

Out[13]:

array([ 0.115, 0. , 0.21 , 0.353, 0.322])

In [14]:

#得到的预期收益率、波动率和夏普指数

statistics(optv['x']).round(3)

Out[14]:

array([ 0.226, 0.385, 0.587])

8.组合的有效前沿

有效前沿有既定的目标收益率下方差最小的投资组合构成。

在最优化时采用两个约束,1.给定目标收益率,2.投资组合权重和为1。

In [15]:

def min_variance(weights):

return statistics(weights)[1]

#在不同目标收益率水平(target_returns)循环时,最小化的一个约束条件会变化。

target_returns = np.linspace(0.0,0.5,50)

target_variance = []

for tar in target_returns:

cons = ({'type':'eq','fun':lambda x:statistics(x)[0]-tar},{'type':'eq','fun':lambda x:np.sum(x)-1})

res = sco.minimize(min_variance, noa*[1./noa,],method = 'SLSQP', bounds = bnds, constraints = cons)

target_variance.append(res['fun'])

target_variance = np.array(target_variance)

下面是最优化结果的展示。

叉号:构成的曲线是有效前沿(目标收益率下最优的投资组合)

红星:sharpe最大的投资组合

黄星:方差最小的投资组合

In [16]:

plt.figure(figsize = (8,4))

#圆圈:蒙特卡洛随机产生的组合分布

plt.scatter(port_variance, port_returns, c = port_returns/port_variance,marker = 'o')

#叉号:有效前沿

plt.scatter(target_variance,target_returns, c = target_returns/target_variance, marker = 'x')

#红星:标记最高sharpe组合

plt.plot(statistics(opts['x'])[1], statistics(opts['x'])[0], 'r*', markersize = 15.0)

#黄星:标记最小方差组合

plt.plot(statistics(optv['x'])[1], statistics(optv['x'])[0], 'y*', markersize = 15.0)

plt.grid(True)

plt.xlabel('expected volatility')

plt.ylabel('expected return')

plt.colorbar(label = 'Sharpe ratio')

import matplotlib.pyplot as plt

from matplotlib.patches import Circle

# 创建一个图形对象

fig = plt.figure()

# 循环绘制一百个同心圆

for i in range(100):

# 使用 Circle 类创建圆形,并指定半径和圆心坐标

circle = Circle(xy=(0, 0), radius=i+1)

# 使用 fig.add_subplot() 方法将圆形添加到图中

ax = fig.add_subplot(1, 1, 1)

ax.add_patch(circle)

# 调用 plt.show() 方法显示图形

plt.show()