60-R语言中的神经网络

Python048

60-R语言中的神经网络,第1张

《深度学习精要(基于R语言)》学习笔记

机器学习主要用于开发和使用那些从原始数据中学习、总结出来的用于进行预测的算法。

深度学习是一种强大的多层架构,可以用于模式识别、信号检测以及分类或预测等多个领域。

神经网络包括一系列的神经元,或者叫作节点,它们彼此连结并处理输入。神经元之间的连结经过加权处理,权重取决于从数据中学习、总结出的使用函数。一组神经元的激活和权重(从数据中自适应地学习)可以提供给其他的神经元,其中一些最终神经元的激活就是预测。

经常选择的激活函数是sigmoid函数以及双曲正切函数tanh,因为径向基函数是有效的函数逼近,所以有时也会用到它们。

权重是从每个隐藏单元到每个输出的路径,对第i个的输出通过(w_i)表示。如创建隐藏层的权重,这些权重也是从数据中学习得到的。分类会经常使用一种最终变换,softmax函数。线性回归经常使用恒等(identity)函数,它返回输入值。权重必须从数据中学习得到,权重为零或接近零基本上等同于放弃不必要的关系。

R中神经网络相关包:

一旦集群完成初始化,可以使用R或本地主机(127.0.0.1:54321)提供的Web接口与它连接。

如果数据集已经加载到R,使用as.h2o()函数:

如果数据没有载入R,可以直接导入到h2o中:

也可以直接导入网络上的文件:

导入基于图片识别手写体数字,数据集的每一列(即特征),表示图像的一个像素。每张图像都经过标准化处理,转化成同样的大小,所以所有图像的像素个数都相同。第一列包含真实的数据标签,其余各列是黑暗像素的值,它用于分类。

使用caret包训练模型

生成数据的一组预测,查看柱状图:

跟训练集数据柱状图对比,很明显模型不是最优的。

通过混淆矩阵检查模型性能:

No Information Rate(无信息率)指不考虑任何信息而仅仅通过猜测来决定最频繁的类的准确度期望。在情形“1”中,它在11.16%的时间中发生。P值(P-Value [Acc >NIR])检验了观测准确度(Accuracy : 0.3674)是否显著不同于无信息率(11.16%)。

Class: 0的灵敏度(Sensitivity)可以解释为:89.07%的数字0被正确地预测为0。特异度(Specificity)可以解释为:95.14%的预测为非数字0被预测为不是数字0。

检出率(Detection Rate)是真阳性的百分比,而最后的检出预防度(detection prevalence)是预测为阳性的实例比例,不管它们是否真的为阳性。

平衡准确度(balanced accuracy)是灵敏度和特异度的平均值。

接下来我们通过增加神经元的个数来提升模型的性能,其代价是模型的复杂性会显著增加:

隐藏神经元的数量从5个增加到10个,样本内性能的总准确度从36.74% 提升到了 65.4%。我们继续增加隐藏神经元的数量:

增加到40个神经元后准确度跟10个神经元的一样,还是65.4%。如果是商业问题,还需要继续调节神经元的数量和衰变率。但是作为学习,模型对数字9的表现比较差,对其他数字都还行。

RSNNS包提供了使用斯图加特神经网络仿真器(Stuttgart Neural Network Simulator , SNNS)模型的接口,但是,对基本的、单隐藏层的、前馈的神经网络,我们可以使用mlp()这个更为方便的封装函数,它的名称表示多层感知器(multi-layer perceptron)。

RSNNS包要求输入为矩阵、响应变量为一个哑变量的 矩阵 ,因此每个可能的类表示成矩阵列中的 0/1 编码。

通过decodeClassLabels()函数可以很方便的将数据转换为哑变量矩阵。

预测结果的值为1-10,但是实际值为0-9,所以在生成混淆矩阵时,需要先减去1:

RSNNS包的学习算法使用了相同数目的隐藏神经元,计算结果的性能却有极大提高。

函数I()有两个作用:

1.在对data.frame的调用中将对象包含在I()中来保护它,防止字符向量到factor的转换和名称的删除,并确保矩阵作为单列插入。

2.在formula函数中,它被用来禁止将“+”、“-”、“*”和“^”等运算符解释为公式运算符,因此它们被用作算术运算符。

从RSNNS包返回的预测值(pred.ml4)中可以看到,一个观测可能有40%的概率成为“5”,20%的概率成为“6”,等等。最简单的方法就是基于高预测概率来对观测进行分类。RSNNS包有一种称为赢者通吃(winner takes all,WTA)的方法,只要没有关系就选择概率最高的类,最高的概率高于用户定义的阈值(这个阈值可以是0),而其他类的预测概率都低于最大值减去另一个用户定义的阈值,否则观测的分类就不明了。如果这两个阈值都是0(缺省),那么最大值必然存在并且唯一。这种方法的优点是它提供了某种质量控制。

但是在实际应用中,比如一个医学背景下,我们收集了病人的多种生物指标和基因信息,用来分类确定他们是否健康,是否有患癌症的风险,是否有患心脏病的风险,即使有40%的患癌概率也需要病人进一步做检查,即便他健康的概率是60%。RSNNS包中还提供一种分类方法称为“402040”,如果一个值高于用户定义的阈值,而所有的其他值低于用户定义的另一个阈值。如果多个值都高于第一个阈值,或者任何值都不低于第二个阈值,我们就把观测定性为未知的。这样做的目的是再次给出了某种质量控制。

“0”分类表示未知的预测。

通常来说,过拟合指模型在训练集上的性能优于测试集。过拟合发生在模型正好拟合了训练数据的噪声部分的时候。因为考虑了噪声,它似乎更准确,但一个数据集和下一个数据集的噪声不同,这种准确度不能运用于除了训练数据之外的任何数据 — 它没有一般化。

使用RSNNS模型对样本外数据预测:

模型在第一个5000行上的准确度为85.1%,在第二个5000行上的准确度减少为80%,损失超过5%,换句话说,使用训练数据来评价模型性能导致了过度乐观的准确度估计,过度估计是5%。

这个问题我们后面再处理。

基于R语言的分类算法之决策树

ID3 《= 最大信息熵增益,只能处理离散型数据

C4.5 《= 信息增益率,可处理连续性和离散型数据,相比ID3,减少了因变量过多导致的过拟合

C5.0 《= 信息增益率,运算性能比C4.5更强大

CART 《= 基尼指数最小原则,连续性和离散型数据均可

信息熵体现的是数据的杂乱程度,信息越杂乱,信息熵越大,反之越小。 例如:拥有四种连续型变量的特征变量的信息熵一定比拥有三种的要大。

特征变量的N种可能性,每种可能性的概率相同,N越大,信息熵越大。

每种可能性的概率不同,越偏态,信息熵越小。

所有特征变量中,信息增益率的,就是根节点(root leaf),根节点一般是选择N越大的特征变量,因为N越大,信息熵越大。

信息增益率是在信息熵的基础上作惩罚计算,避免特征变量可能性多导致的高信息增益。

代码相关

library(C50)

C5.0(x,y, trials = 1, rules=FALSE,weights=NULL,control=C5.0Control(),costs=NULL)

x为特征变量,y为应变量

trials 为迭代次数(这个值根据不同数据而不同,并非越大越好,一般介于5-15之间,可以用遍历来寻找最高准确率的模型,对模型准确率的提升效果中等)

cost 为损失矩阵,R中应该传入一个矩阵(据说是对准确率矩阵约束猜测错误的项,但是并没特别明显的规律,可以使用遍历来寻找最好的cost,准确率提升效果小)

costs <- matrix(c(1,2,1,2),

ncol = 2, byrow = TRUE,

dimnames = list(c("yes","no"), c("yes","no")))

control 设置C5.0模型的其他参数,比如置信水平和节点最小样本等(水很深,参数很多,可以自行查阅R的帮助文档,我只设置了一个CF,准确率提升效果小)

control = C5.0Control(CF = 0.25)

library(C50)

#对iris随机划分训练集和测试集

set.seed(1234)

index <- sample(1:nrow(iris), size = 0.75*nrow(iris))

train <- iris[index,]

test <- iris[-index,]

#查看训练集和测试集分布是否合理

prop.table(table(train$Species))

prop.table(table(test$Species))

#不设置任何参数

fit1 <- C5.0(x = train[,1:4], y = train[,5])

pred1 <- predict(fit1, newdata = test[,-5])

freq1 <- table(pred1, test[,5])

accuracy <- sum(diag(freq1))/sum(freq1)

pred1setosa versicolor virginica

setosa 16 0 0

versicolor 0 13 1

virginica 0 0 8

准确率为0.9736842,只有一个错误。。。显然150个iris太少了,优化都省了。