aes加密算法C代码

Python016

aes加密算法C代码,第1张

完整的!

#include "stdio.h"

#include "memory.h"

#include "time.h"

#include "stdlib.h"

#define PLAIN_FILE_OPEN_ERROR -1

#define KEY_FILE_OPEN_ERROR -2

#define CIPHER_FILE_OPEN_ERROR -3

#define OK 1

typedef char ElemType

/*初始置换表IP*/

int IP_Table[64] = { 57,49,41,33,25,17,9,1,

59,51,43,35,27,19,11,3,

61,53,45,37,29,21,13,5,

63,55,47,39,31,23,15,7,

56,48,40,32,24,16,8,0,

58,50,42,34,26,18,10,2,

60,52,44,36,28,20,12,4,

62,54,46,38,30,22,14,6}

/*逆初始置换表IP^-1*/

int IP_1_Table[64] = {39,7,47,15,55,23,63,31,

38,6,46,14,54,22,62,30,

37,5,45,13,53,21,61,29,

36,4,44,12,52,20,60,28,

35,3,43,11,51,19,59,27,

34,2,42,10,50,18,58,26,

33,1,41,9,49,17,57,25,

32,0,40,8,48,16,56,24}

/*扩充置换表E*/

int E_Table[48] = {31, 0, 1, 2, 3, 4,

3, 4, 5, 6, 7, 8,

7, 8,9,10,11,12,

11,12,13,14,15,16,

15,16,17,18,19,20,

19,20,21,22,23,24,

23,24,25,26,27,28,

27,28,29,30,31, 0}

/*置换函数P*/

int P_Table[32] = {15,6,19,20,28,11,27,16,

0,14,22,25,4,17,30,9,

1,7,23,13,31,26,2,8,

18,12,29,5,21,10,3,24}

/*S盒*/

int S[8][4][16] =

/*S1*/

{{{14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7},

{0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8},

{4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0},

{15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13}},

/*S2*/

{{15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10},

{3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5},

{0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15},

{13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9}},

/*S3*/

{{10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8},

{13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1},

{13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7},

{1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12}},

/*S4*/

{{7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15},

{13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9},

{10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4},

{3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14}},

/*S5*/

{{2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9},

{14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6},

{4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14},

{11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3}},

/*S6*/

{{12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11},

{10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8},

{9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6},

{4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13}},

/*S7*/

{{4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1},

{13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6},

{1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2},

{6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12}},

/*S8*/

{{13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7},

{1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2},

{7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8},

{2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11}}}

/*置换选择1*/

int PC_1[56] = {56,48,40,32,24,16,8,

0,57,49,41,33,25,17,

9,1,58,50,42,34,26,

18,10,2,59,51,43,35,

62,54,46,38,30,22,14,

6,61,53,45,37,29,21,

13,5,60,52,44,36,28,

20,12,4,27,19,11,3}

/*置换选择2*/

int PC_2[48] = {13,16,10,23,0,4,2,27,

14,5,20,9,22,18,11,3,

25,7,15,6,26,19,12,1,

40,51,30,36,46,54,29,39,

50,44,32,46,43,48,38,55,

33,52,45,41,49,35,28,31}

/*对左移次数的规定*/

int MOVE_TIMES[16] = {1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1}

int ByteToBit(ElemType ch,ElemType bit[8])

int BitToByte(ElemType bit[8],ElemType *ch)

int Char8ToBit64(ElemType ch[8],ElemType bit[64])

int Bit64ToChar8(ElemType bit[64],ElemType ch[8])

int DES_MakeSubKeys(ElemType key[64],ElemType subKeys[16][48])

int DES_PC1_Transform(ElemType key[64], ElemType tempbts[56])

int DES_PC2_Transform(ElemType key[56], ElemType tempbts[48])

int DES_ROL(ElemType data[56], int time)

int DES_IP_Transform(ElemType data[64])

int DES_IP_1_Transform(ElemType data[64])

int DES_E_Transform(ElemType data[48])

int DES_P_Transform(ElemType data[32])

int DES_SBOX(ElemType data[48])

int DES_XOR(ElemType R[48], ElemType L[48],int count)

int DES_Swap(ElemType left[32],ElemType right[32])

int DES_EncryptBlock(ElemType plainBlock[8], ElemType subKeys[16][48], ElemType cipherBlock[8])

int DES_DecryptBlock(ElemType cipherBlock[8], ElemType subKeys[16][48], ElemType plainBlock[8])

int DES_Encrypt(char *plainFile, char *keyStr,char *cipherFile)

int DES_Decrypt(char *cipherFile, char *keyStr,char *plainFile)

/*字节转换成二进制*/

int ByteToBit(ElemType ch, ElemType bit[8]){

int cnt

for(cnt = 0cnt <8cnt++){

*(bit+cnt) = (ch>>cnt)&1

}

return 0

}

/*二进制转换成字节*/

int BitToByte(ElemType bit[8],ElemType *ch){

int cnt

for(cnt = 0cnt <8cnt++){

*ch |= *(bit + cnt)<<cnt

}

return 0

}

/*将长度为8的字符串转为二进制位串*/

int Char8ToBit64(ElemType ch[8],ElemType bit[64]){

int cnt

for(cnt = 0cnt <8cnt++){

ByteToBit(*(ch+cnt),bit+(cnt<<3))

}

return 0

}

/*将二进制位串转为长度为8的字符串*/

int Bit64ToChar8(ElemType bit[64],ElemType ch[8]){

int cnt

memset(ch,0,8)

for(cnt = 0cnt <8cnt++){

BitToByte(bit+(cnt<<3),ch+cnt)

}

return 0

}

/*生成子密钥*/

int DES_MakeSubKeys(ElemType key[64],ElemType subKeys[16][48]){

ElemType temp[56]

int cnt

DES_PC1_Transform(key,temp)/*PC1置换*/

for(cnt = 0cnt <16cnt++){/*16轮跌代,产生16个子密钥*/

DES_ROL(temp,MOVE_TIMES[cnt])/*循环左移*/

DES_PC2_Transform(temp,subKeys[cnt])/*PC2置换,产生子密钥*/

}

return 0

}

/*密钥置换1*/

int DES_PC1_Transform(ElemType key[64], ElemType tempbts[56]){

int cnt

for(cnt = 0cnt <56cnt++){

tempbts[cnt] = key[PC_1[cnt]]

}

return 0

}

/*密钥置换2*/

int DES_PC2_Transform(ElemType key[56], ElemType tempbts[48]){

int cnt

for(cnt = 0cnt <48cnt++){

tempbts[cnt] = key[PC_2[cnt]]

}

return 0

}

/*循环左移*/

int DES_ROL(ElemType data[56], int time){

ElemType temp[56]

/*保存将要循环移动到右边的位*/

memcpy(temp,data,time)

memcpy(temp+time,data+28,time)

/*前28位移动*/

memcpy(data,data+time,28-time)

memcpy(data+28-time,temp,time)

/*后28位移动*/

memcpy(data+28,data+28+time,28-time)

memcpy(data+56-time,temp+time,time)

return 0

}

/*IP置换*/

int DES_IP_Transform(ElemType data[64]){

int cnt

ElemType temp[64]

for(cnt = 0cnt <64cnt++){

temp[cnt] = data[IP_Table[cnt]]

}

memcpy(data,temp,64)

return 0

}

/*IP逆置换*/

int DES_IP_1_Transform(ElemType data[64]){

int cnt

ElemType temp[64]

for(cnt = 0cnt <64cnt++){

temp[cnt] = data[IP_1_Table[cnt]]

}

memcpy(data,temp,64)

return 0

}

/*扩展置换*/

int DES_E_Transform(ElemType data[48]){

int cnt

ElemType temp[48]

for(cnt = 0cnt <48cnt++){

temp[cnt] = data[E_Table[cnt]]

}

memcpy(data,temp,48)

return 0

}

/*P置换*/

int DES_P_Transform(ElemType data[32]){

int cnt

ElemType temp[32]

for(cnt = 0cnt <32cnt++){

temp[cnt] = data[P_Table[cnt]]

}

memcpy(data,temp,32)

return 0

}

/*异或*/

int DES_XOR(ElemType R[48], ElemType L[48] ,int count){

int cnt

for(cnt = 0cnt <countcnt++){

R[cnt] ^= L[cnt]

}

return 0

}

/*S盒置换*/

int DES_SBOX(ElemType data[48]){

int cnt

int line,row,output

int cur1,cur2

for(cnt = 0cnt <8cnt++){

cur1 = cnt*6

cur2 = cnt<<2

/*计算在S盒中的行与列*/

line = (data[cur1]<<1) + data[cur1+5]

row = (data[cur1+1]<<3) + (data[cur1+2]<<2)

+ (data[cur1+3]<<1) + data[cur1+4]

output = S[cnt][line][row]

/*化为2进制*/

data[cur2] = (output&0X08)>>3

data[cur2+1] = (output&0X04)>>2

data[cur2+2] = (output&0X02)>>1

data[cur2+3] = output&0x01

}

return 0

}

/*交换*/

int DES_Swap(ElemType left[32], ElemType right[32]){

ElemType temp[32]

memcpy(temp,left,32)

memcpy(left,right,32)

memcpy(right,temp,32)

return 0

}

/*加密单个分组*/

int DES_EncryptBlock(ElemType plainBlock[8], ElemType subKeys[16][48], ElemType cipherBlock[8]){

ElemType plainBits[64]

ElemType copyRight[48]

int cnt

Char8ToBit64(plainBlock,plainBits)

/*初始置换(IP置换)*/

DES_IP_Transform(plainBits)

/*16轮迭代*/

for(cnt = 0cnt <16cnt++){

memcpy(copyRight,plainBits+32,32)

/*将右半部分进行扩展置换,从32位扩展到48位*/

DES_E_Transform(copyRight)

/*将右半部分与子密钥进行异或操作*/

DES_XOR(copyRight,subKeys[cnt],48)

/*异或结果进入S盒,输出32位结果*/

DES_SBOX(copyRight)

/*P置换*/

DES_P_Transform(copyRight)

/*将明文左半部分与右半部分进行异或*/

DES_XOR(plainBits,copyRight,32)

if(cnt != 15){

/*最终完成左右部的交换*/

DES_Swap(plainBits,plainBits+32)

}

}

/*逆初始置换(IP^1置换)*/

DES_IP_1_Transform(plainBits)

Bit64ToChar8(plainBits,cipherBlock)

return 0

}

/*解密单个分组*/

int DES_DecryptBlock(ElemType cipherBlock[8], ElemType subKeys[16][48],ElemType plainBlock[8]){

ElemType cipherBits[64]

ElemType copyRight[48]

int cnt

Char8ToBit64(cipherBlock,cipherBits)

/*初始置换(IP置换)*/

DES_IP_Transform(cipherBits)

/*16轮迭代*/

for(cnt = 15cnt >= 0cnt--){

memcpy(copyRight,cipherBits+32,32)

/*将右半部分进行扩展置换,从32位扩展到48位*/

DES_E_Transform(copyRight)

/*将右半部分与子密钥进行异或操作*/

DES_XOR(copyRight,subKeys[cnt],48)

/*异或结果进入S盒,输出32位结果*/

DES_SBOX(copyRight)

/*P置换*/

DES_P_Transform(copyRight)

/*将明文左半部分与右半部分进行异或*/

DES_XOR(cipherBits,copyRight,32)

if(cnt != 0){

/*最终完成左右部的交换*/

DES_Swap(cipherBits,cipherBits+32)

}

}

/*逆初始置换(IP^1置换)*/

DES_IP_1_Transform(cipherBits)

Bit64ToChar8(cipherBits,plainBlock)

return 0

}

/*加密文件*/

int DES_Encrypt(char *plainFile, char *keyStr,char *cipherFile){

FILE *plain,*cipher

int count

ElemType plainBlock[8],cipherBlock[8],keyBlock[8]

ElemType bKey[64]

ElemType subKeys[16][48]

if((plain = fopen(plainFile,"rb")) == NULL){

return PLAIN_FILE_OPEN_ERROR

}

if((cipher = fopen(cipherFile,"wb")) == NULL){

return CIPHER_FILE_OPEN_ERROR

}

/*设置密钥*/

memcpy(keyBlock,keyStr,8)

/*将密钥转换为二进制流*/

Char8ToBit64(keyBlock,bKey)

/*生成子密钥*/

DES_MakeSubKeys(bKey,subKeys)

while(!feof(plain)){

/*每次读8个字节,并返回成功读取的字节数*/

if((count = fread(plainBlock,sizeof(char),8,plain)) == 8){

DES_EncryptBlock(plainBlock,subKeys,cipherBlock)

fwrite(cipherBlock,sizeof(char),8,cipher)

}

}

if(count){

/*填充*/

memset(plainBlock + count,'\0',7 - count)

/*最后一个字符保存包括最后一个字符在内的所填充的字符数量*/

plainBlock[7] = 8 - count

DES_EncryptBlock(plainBlock,subKeys,cipherBlock)

fwrite(cipherBlock,sizeof(char),8,cipher)

}

fclose(plain)

fclose(cipher)

return OK

}

/*解密文件*/

int DES_Decrypt(char *cipherFile, char *keyStr,char *plainFile){

FILE *plain, *cipher

int count,times = 0

long fileLen

ElemType plainBlock[8],cipherBlock[8],keyBlock[8]

ElemType bKey[64]

ElemType subKeys[16][48]

if((cipher = fopen(cipherFile,"rb")) == NULL){

return CIPHER_FILE_OPEN_ERROR

}

if((plain = fopen(plainFile,"wb")) == NULL){

return PLAIN_FILE_OPEN_ERROR

}

/*设置密钥*/

memcpy(keyBlock,keyStr,8)

/*将密钥转换为二进制流*/

Char8ToBit64(keyBlock,bKey)

/*生成子密钥*/

DES_MakeSubKeys(bKey,subKeys)

/*取文件长度 */

fseek(cipher,0,SEEK_END)/*将文件指针置尾*/

fileLen = ftell(cipher)/*取文件指针当前位置*/

rewind(cipher)/*将文件指针重指向文件头*/

while(1){

/*密文的字节数一定是8的整数倍*/

fread(cipherBlock,sizeof(char),8,cipher)

DES_DecryptBlock(cipherBlock,subKeys,plainBlock)

times += 8

if(times <fileLen){

fwrite(plainBlock,sizeof(char),8,plain)

}

else{

break

}

}

/*判断末尾是否被填充*/

if(plainBlock[7] <8){

for(count = 8 - plainBlock[7]count <7count++){

if(plainBlock[count] != '\0'){

break

}

}

}

if(count == 7){/*有填充*/

fwrite(plainBlock,sizeof(char),8 - plainBlock[7],plain)

}

else{/*无填充*/

fwrite(plainBlock,sizeof(char),8,plain)

}

fclose(plain)

fclose(cipher)

return OK

}

int main()

{

clock_t a,b

a = clock()

DES_Encrypt("1.txt","key.txt","2.txt")

b = clock()

printf("加密消耗%d毫秒\n",b-a)

system("pause")

a = clock()

DES_Decrypt("2.txt","key.txt","3.txt")

b = clock()

printf("解密消耗%d毫秒\n",b-a)

getchar()

return 0

}

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include <openssl/aes.h>

#include "encode.h"

int encode(char *content,int way)

{

AES_KEY aes

unsigned char key[AES_BLOCK_SIZE]

unsigned char iv[AES_BLOCK_SIZE]

unsigned char *encrypt_string

unsigned char *input_string

int len,i

/*Set Input string*/

if((strlen(content)+1)%AES_BLOCK_SIZE==0)

len=strlen(content)+1

else

len=((strlen(content)+1)/AES_BLOCK_SIZE+1)*AES_BLOCK_SIZE

input_string=(unsigned char *)calloc(len,sizeof(unsigned char))

if(input_string==NULL)

return -1

strncpy(input_string,content,strlen(content))

for(i=0i<16++i)

key[i]=i+12

for(i=0i<AES_BLOCK_SIZE++i)

iv[i]=i

if(way==0)

{

if(AES_set_encrypt_key(key,128,&aes)<0)

return -1

}

else

{

if(AES_set_decrypt_key(key,128,&aes)<0)

return -1

}

encrypt_string=(unsigned char *)calloc(len,sizeof(unsigned char))

if(encrypt_string==NULL)

return -1

if(way==0)

AES_cbc_encrypt(input_string,encrypt_string,len,&aes,iv,AES_ENCRYPT)

else

AES_cbc_encrypt(input_string,encrypt_string,len,&aes,iv,AES_DECRYPT)

strcpy(content,(char *)encrypt_string)

free(input_string)

free(encrypt_string)

return 0

}

恰好我有。能运行的,C语言的。

#include <string.h>

#include "aes.h"

#include "commonage.h"

#define byte unsigned char

#define BPOLY 0x1b //!<Lower 8 bits of (x^8+x^4+x^3+x+1), ie. (x^4+x^3+x+1).

#define BLOCKSIZE 16 //!<Block size in number of bytes.

#define KEYBITS 128 //!<Use AES128.

#define ROUNDS 10 //!<Number of rounds.

#define KEYLENGTH 16 //!<Key length in number of bytes.

byte xdata block1[ 256 ]//!<Workspace 1.

byte xdata block2[ 256 ]//!<Worksapce 2.

byte xdata * powTbl//!<Final location of exponentiation lookup table.

byte xdata * logTbl//!<Final location of logarithm lookup table.

byte xdata * sBox//!<Final location of s-box.

byte xdata * sBoxInv//!<Final location of inverse s-box.

byte xdata * expandedKey//!<Final location of expanded key.

void CalcPowLog( byte * powTbl, byte * logTbl )

{

byte xdata i = 0

byte xdata t = 1

do {

// Use 0x03 as root for exponentiation and logarithms.

powTbl[i] = t

logTbl[t] = i

i++

// Muliply t by 3 in GF(2^8).

t ^= (t <<1) ^ (t &0x80 ? BPOLY : 0)

} while( t != 1 )// Cyclic properties ensure that i <255.

powTbl[255] = powTbl[0]// 255 = '-0', 254 = -1, etc.

}

void CalcSBox( byte * sBox )

{

byte xdata i, rot

byte xdata temp

byte xdata result

// Fill all entries of sBox[].

i = 0

do {

// Inverse in GF(2^8).

if( i >0 ) {

temp = powTbl[ 255 - logTbl[i] ]

} else {

temp = 0

}

// Affine transformation in GF(2).

result = temp ^ 0x63// Start with adding a vector in GF(2).

for( rot = 0rot <4rot++ ) {

// Rotate left.

temp = (temp<<1) | (temp>>7)

// Add rotated byte in GF(2).

result ^= temp

}

// Put result in table.

sBox[i] = result

} while( ++i != 0 )

}

void CalcSBoxInv( byte * sBox, byte * sBoxInv )

{

byte xdata i = 0

byte xdata j = 0

// Iterate through all elements in sBoxInv using i.

do {

// Search through sBox using j.

cleardog()

do {

// Check if current j is the inverse of current i.

if( sBox[ j ] == i ) {

// If so, set sBoxInc and indicate search finished.

sBoxInv[ i ] = j

j = 255

}

} while( ++j != 0 )

} while( ++i != 0 )

}

void CycleLeft( byte * row )

{

// Cycle 4 bytes in an array left once.

byte xdata temp = row[0]

row[0] = row[1]

row[1] = row[2]

row[2] = row[3]

row[3] = temp

}

void InvMixColumn( byte * column )

{

byte xdata r0, r1, r2, r3

r0 = column[1] ^ column[2] ^ column[3]

r1 = column[0] ^ column[2] ^ column[3]

r2 = column[0] ^ column[1] ^ column[3]

r3 = column[0] ^ column[1] ^ column[2]

column[0] = (column[0] <<1) ^ (column[0] &0x80 ? BPOLY : 0)

column[1] = (column[1] <<1) ^ (column[1] &0x80 ? BPOLY : 0)

column[2] = (column[2] <<1) ^ (column[2] &0x80 ? BPOLY : 0)

column[3] = (column[3] <<1) ^ (column[3] &0x80 ? BPOLY : 0)

r0 ^= column[0] ^ column[1]

r1 ^= column[1] ^ column[2]

r2 ^= column[2] ^ column[3]

r3 ^= column[0] ^ column[3]

column[0] = (column[0] <<1) ^ (column[0] &0x80 ? BPOLY : 0)

column[1] = (column[1] <<1) ^ (column[1] &0x80 ? BPOLY : 0)

column[2] = (column[2] <<1) ^ (column[2] &0x80 ? BPOLY : 0)

column[3] = (column[3] <<1) ^ (column[3] &0x80 ? BPOLY : 0)

r0 ^= column[0] ^ column[2]

r1 ^= column[1] ^ column[3]

r2 ^= column[0] ^ column[2]

r3 ^= column[1] ^ column[3]

column[0] = (column[0] <<1) ^ (column[0] &0x80 ? BPOLY : 0)

column[1] = (column[1] <<1) ^ (column[1] &0x80 ? BPOLY : 0)

column[2] = (column[2] <<1) ^ (column[2] &0x80 ? BPOLY : 0)

column[3] = (column[3] <<1) ^ (column[3] &0x80 ? BPOLY : 0)

column[0] ^= column[1] ^ column[2] ^ column[3]

r0 ^= column[0]

r1 ^= column[0]

r2 ^= column[0]

r3 ^= column[0]

column[0] = r0

column[1] = r1

column[2] = r2

column[3] = r3

}

byte Multiply( unsigned char num, unsigned char factor )

{

byte mask = 1

byte result = 0

while( mask != 0 ) {

// Check bit of factor given by mask.

if( mask &factor ) {

// Add current multiple of num in GF(2).

result ^= num

}

// Shift mask to indicate next bit.

mask <<= 1

// Double num.

num = (num <<1) ^ (num &0x80 ? BPOLY : 0)

}

return result

}

byte DotProduct( unsigned char * vector1, unsigned char * vector2 )

{

byte result = 0

result ^= Multiply( *vector1++, *vector2++ )

result ^= Multiply( *vector1++, *vector2++ )

result ^= Multiply( *vector1++, *vector2++ )

result ^= Multiply( *vector1 , *vector2 )

return result

}

void MixColumn( byte * column )

{

byte xdata row[8] = {

0x02, 0x03, 0x01, 0x01,

0x02, 0x03, 0x01, 0x01

}// Prepare first row of matrix twice, to eliminate need for cycling.

byte xdata result[4]

// Take dot products of each matrix row and the column vector.

result[0] = DotProduct( row+0, column )

result[1] = DotProduct( row+3, column )

result[2] = DotProduct( row+2, column )

result[3] = DotProduct( row+1, column )

// Copy temporary result to original column.

column[0] = result[0]

column[1] = result[1]

column[2] = result[2]

column[3] = result[3]

}

void SubBytes( byte * bytes, byte count )

{

do {

*bytes = sBox[ *bytes ]// Substitute every byte in state.

bytes++

} while( --count )

}

void InvSubBytesAndXOR( byte * bytes, byte * key, byte count )

{

do {

// *bytes = sBoxInv[ *bytes ] ^ *key// Inverse substitute every byte in state and add key.

*bytes = block2[ *bytes ] ^ *key// Use block2 directly. Increases speed.

bytes++

key++

} while( --count )

}

void InvShiftRows( byte * state )

{

byte temp

// Note: State is arranged column by column.

// Cycle second row right one time.

temp = state[ 1 + 3*4 ]

state[ 1 + 3*4 ] = state[ 1 + 2*4 ]

state[ 1 + 2*4 ] = state[ 1 + 1*4 ]

state[ 1 + 1*4 ] = state[ 1 + 0*4 ]

state[ 1 + 0*4 ] = temp

// Cycle third row right two times.

temp = state[ 2 + 0*4 ]

state[ 2 + 0*4 ] = state[ 2 + 2*4 ]

state[ 2 + 2*4 ] = temp

temp = state[ 2 + 1*4 ]

state[ 2 + 1*4 ] = state[ 2 + 3*4 ]

state[ 2 + 3*4 ] = temp

// Cycle fourth row right three times, ie. left once.

temp = state[ 3 + 0*4 ]

state[ 3 + 0*4 ] = state[ 3 + 1*4 ]

state[ 3 + 1*4 ] = state[ 3 + 2*4 ]

state[ 3 + 2*4 ] = state[ 3 + 3*4 ]

state[ 3 + 3*4 ] = temp

}

void ShiftRows( byte * state )

{

byte temp

// Note: State is arranged column by column.

// Cycle second row left one time.

temp = state[ 1 + 0*4 ]

state[ 1 + 0*4 ] = state[ 1 + 1*4 ]

state[ 1 + 1*4 ] = state[ 1 + 2*4 ]

state[ 1 + 2*4 ] = state[ 1 + 3*4 ]

state[ 1 + 3*4 ] = temp

// Cycle third row left two times.

temp = state[ 2 + 0*4 ]

state[ 2 + 0*4 ] = state[ 2 + 2*4 ]

state[ 2 + 2*4 ] = temp

temp = state[ 2 + 1*4 ]

state[ 2 + 1*4 ] = state[ 2 + 3*4 ]

state[ 2 + 3*4 ] = temp

// Cycle fourth row left three times, ie. right once.

temp = state[ 3 + 3*4 ]

state[ 3 + 3*4 ] = state[ 3 + 2*4 ]

state[ 3 + 2*4 ] = state[ 3 + 1*4 ]

state[ 3 + 1*4 ] = state[ 3 + 0*4 ]

state[ 3 + 0*4 ] = temp

}

void InvMixColumns( byte * state )

{

InvMixColumn( state + 0*4 )

InvMixColumn( state + 1*4 )

InvMixColumn( state + 2*4 )

InvMixColumn( state + 3*4 )

}

void MixColumns( byte * state )

{

MixColumn( state + 0*4 )

MixColumn( state + 1*4 )

MixColumn( state + 2*4 )

MixColumn( state + 3*4 )

}

void XORBytes( byte * bytes1, byte * bytes2, byte count )

{

do {

*bytes1 ^= *bytes2// Add in GF(2), ie. XOR.

bytes1++

bytes2++

} while( --count )

}

void CopyBytes( byte * to, byte * from, byte count )

{

do {

*to = *from

to++

from++

} while( --count )

}

void KeyExpansion( byte * expandedKey )

{

byte xdata temp[4]

byte i

byte xdata Rcon[4] = { 0x01, 0x00, 0x00, 0x00 }// Round constant.

unsigned char xdata *key

unsigned char xdata a[16]

key=a

//以下为加解密密码,共16字节。可以选择任意值

key[0]=0x30

key[1]=0x30

key[2]=0x30

key[3]=0x30

key[4]=0x30

key[5]=0x30

key[6]=0x30

key[7]=0x30

key[8]=0x30

key[9]=0x30

key[10]=0x30

key[11]=0x30

key[12]=0x30

key[13]=0x30

key[14]=0x30

key[15]=0x30

////////////////////////////////////////////

// Copy key to start of expanded key.

i = KEYLENGTH

do {

*expandedKey = *key

expandedKey++

key++

} while( --i )

// Prepare last 4 bytes of key in temp.

expandedKey -= 4

temp[0] = *(expandedKey++)

temp[1] = *(expandedKey++)

temp[2] = *(expandedKey++)

temp[3] = *(expandedKey++)

// Expand key.

i = KEYLENGTH

while( i <BLOCKSIZE*(ROUNDS+1) ) {

// Are we at the start of a multiple of the key size?

if( (i % KEYLENGTH) == 0 ) {

CycleLeft( temp )// Cycle left once.

SubBytes( temp, 4 )// Substitute each byte.

XORBytes( temp, Rcon, 4 )// Add constant in GF(2).

*Rcon = (*Rcon <<1) ^ (*Rcon &0x80 ? BPOLY : 0)

}

// Keysize larger than 24 bytes, ie. larger that 192 bits?

#if KEYLENGTH >24

// Are we right past a block size?

else if( (i % KEYLENGTH) == BLOCKSIZE ) {

SubBytes( temp, 4 )// Substitute each byte.

}

#endif

// Add bytes in GF(2) one KEYLENGTH away.

XORBytes( temp, expandedKey - KEYLENGTH, 4 )

// Copy result to current 4 bytes.

*(expandedKey++) = temp[ 0 ]

*(expandedKey++) = temp[ 1 ]

*(expandedKey++) = temp[ 2 ]

*(expandedKey++) = temp[ 3 ]

i += 4// Next 4 bytes.

}

}

void InvCipher( byte * block, byte * expandedKey )

{

byte round = ROUNDS-1

expandedKey += BLOCKSIZE * ROUNDS

XORBytes( block, expandedKey, 16 )

expandedKey -= BLOCKSIZE

do {

InvShiftRows( block )

InvSubBytesAndXOR( block, expandedKey, 16 )

expandedKey -= BLOCKSIZE

InvMixColumns( block )

} while( --round )

InvShiftRows( block )

InvSubBytesAndXOR( block, expandedKey, 16 )

}

void Cipher( byte * block, byte * expandedKey )//完成一个块(16字节,128bit)的加密

{

byte round = ROUNDS-1

XORBytes( block, expandedKey, 16 )

expandedKey += BLOCKSIZE

do {

SubBytes( block, 16 )

ShiftRows( block )

MixColumns( block )

XORBytes( block, expandedKey, 16 )

expandedKey += BLOCKSIZE

} while( --round )

SubBytes( block, 16 )

ShiftRows( block )

XORBytes( block, expandedKey, 16 )

}

void aesInit( unsigned char * tempbuf )

{

powTbl = block1

logTbl = block2

CalcPowLog( powTbl, logTbl )

sBox = tempbuf

CalcSBox( sBox )

expandedKey = block1 //至此block1用来存贮密码表

KeyExpansion( expandedKey )

sBoxInv = block2// Must be block2. block2至此开始只用来存贮SBOXINV

CalcSBoxInv( sBox, sBoxInv )

}

//对一个16字节块解密,参数buffer是解密密缓存,chainBlock是要解密的块

void aesDecrypt( unsigned char * buffer, unsigned char * chainBlock )

{

//byte xdata temp[ BLOCKSIZE ]

//CopyBytes( temp, buffer, BLOCKSIZE )

CopyBytes(buffer,chainBlock,BLOCKSIZE)

InvCipher( buffer, expandedKey )

//XORBytes( buffer, chainBlock, BLOCKSIZE )

CopyBytes( chainBlock, buffer, BLOCKSIZE )

}

//对一个16字节块完成加密,参数buffer是加密缓存,chainBlock是要加密的块

void aesEncrypt( unsigned char * buffer, unsigned char * chainBlock )

{

CopyBytes( buffer, chainBlock, BLOCKSIZE )

//XORBytes( buffer, chainBlock, BLOCKSIZE )

Cipher( buffer, expandedKey )

CopyBytes( chainBlock, buffer, BLOCKSIZE )

}

//加解密函数,参数为加解密标志,要加解密的数据缓存起始指针,要加解密的数据长度(如果解密运算,必须是16的整数倍。)

unsigned char aesBlockDecrypt(bit Direct,unsigned char *ChiperDataBuf,unsigned char DataLen)

{

unsigned char xdata i

unsigned char xdata Blocks

unsigned char xdata sBoxbuf[256]

unsigned char xdata tempbuf[16]

unsigned long int xdata OrignLen=0//未加密数据的原始长度

if(Direct==0)

{

*((unsigned char *)&OrignLen+3)=ChiperDataBuf[0]

*((unsigned char *)&OrignLen+2)=ChiperDataBuf[1]

*((unsigned char *)&OrignLen+1)=ChiperDataBuf[2]

*((unsigned char *)&OrignLen)=ChiperDataBuf[3]

DataLen=DataLen-4

}

else

{

memmove(ChiperDataBuf+4,ChiperDataBuf,DataLen)

OrignLen=DataLen

ChiperDataBuf[0]=OrignLen

ChiperDataBuf[1]=OrignLen>>8

ChiperDataBuf[2]=OrignLen>>16

ChiperDataBuf[3]=OrignLen>>24

}

cleardog()

aesInit(sBoxbuf) //初始化

if(Direct==0)//解密

{

Blocks=DataLen/16

for(i=0i<Blocksi++)

{

cleardog()

aesDecrypt(tempbuf,ChiperDataBuf+4+16*i)

}

memmove(ChiperDataBuf,ChiperDataBuf+4,OrignLen)

cleardog()

return(OrignLen)

}

else//加密

{

if(DataLen%16!=0)

{

Blocks=DataLen/16+1

//memset(ChiperDataBuf+4+Blocks*16-(DataLen%16),0x00,DataLen%16)//不足16字节的块补零处理

}

else

{

Blocks=DataLen/16

}

for(i=0i<Blocksi++)

{

cleardog()

aesEncrypt(tempbuf,ChiperDataBuf+4+16*i)

}

cleardog()

return(Blocks*16+4)

}

}

//#endif

以上是C文件。以下是头文件

#ifndef AES_H

#define AES_H

extern void aesInit( unsigned char * tempbuf )

extern void aesDecrypt(unsigned char *buffer, unsigned char *chainBlock)

extern void aesEncrypt( unsigned char * buffer, unsigned char * chainBlock )

extern void aesInit( unsigned char * tempbuf )

extern void aesDecrypt( unsigned char * buffer, unsigned char * chainBlock )

extern void aesEncrypt( unsigned char * buffer, unsigned char * chainBlock )

extern unsigned char aesBlockDecrypt(bit Direct,unsigned char *ChiperDataBuf,unsigned char DataLen)

#endif // AES_H

这是我根据网上程序改写的。只支持128位加解密。没有使用占内存很多的查表法。故运算速度会稍慢。