53-R语言中缺失值处理方法

Python016

53-R语言中缺失值处理方法,第1张

缺失值被认为是预测建模的首要障碍,尽管一些机器学习算法声称能够从根本上解决这个问题,但是谁又能知道究竟在“黑盒子”里能解决得多好。

缺失值填补方法的选择,在很大程度上影响了模型的预测能力。一般处理方法是直接删除相关行,但这样并不好,因为会造成信息丢失。

Hmice是一个多用途的软件包,可用于数据分析、高级图形、缺失值处理、高级表格制作、模型拟合和诊断(线性回归、 Logit模型和cox回归)等。 该软件包包含的功能范围广泛,它提供了两个强大的函数,用于处理缺失值。分别为 impute ()和 aregImpute ()。

impute()函数使用用户定义的统计方法(中间值,最大值,平均值等)来估算缺失值。 默认是使用中位数。另一方面,aregImpute()允许使用加性回归、自举和预测平均匹配进行填补(additive regression, bootstrapping, and predictive mean matching)。

bootstrapping对替代原始数据的样本拟合了一个柔性可加模型(非参数回归方法) ,并利用非缺失值(自变量)对缺失值(因变量)进行了预测。然后,使用预测均值匹配(缺省值)来估算缺失值。

使用平均值填充:

使用随机值填充:

同样,还可以使用min,max,median来估算缺失值。

aregImpute ()自动识别变量类型并相应地处理它们:

输出显示预测缺失值的 R 2 值, 数值越高,预测的数值越好。还可以使用以下命令查看估算值:

画个好看一点的图:

估算缺失值:

pmm:预测均值匹配(PMM)-用于数值变量

logreg: (Logit模型)-二元变量

polyreg(Bayesian polytomous regression):因子变量(>=2个水平)

polr:Proportional odds model(ordered, >= 2 levels)

查看估算的缺失值

由于生成有5个输入数据集,您可以使用 complete ()函数选择任何数据集:

还可以使用5个数据集构建模型,最后将结果合并:

对比一下:

使用生成的6个数据集合并后的回归系数与原始数据的回归系数还是非常接近的。

2016-08-23 05:17 砍柴问樵夫

数据缺失有多种原因,而大部分统计方法都假定处理的是完整矩阵、向量和数据框。

缺失数据的分类:

完全随机缺失 :若某变量的缺失数据与其他任何观测或未观测变量都不相关,则数据为完全随机缺失(MCAR)。

随机缺失: 若某变量上的缺失数据与其他观测变量相关,与它自己的未观测值不相关,则数据为随机缺失(MAR)。

非随机缺失: 若缺失数据不属于MCAR或MAR,则数据为非随机缺失(NMAR) 。

处理缺失数据的方法有很多,但哪种最适合你,需要在实践中检验。

下面一副图形展示处理缺失数据的方法:

处理数据缺失的一般步骤:

1、识别缺失数据

2、检测导致数据缺失的原因

3、删除包含缺失值的实例或用合理的数值代替(插补)缺失值。

1、识别缺失数据:

R语言中, NA 代表缺失值, NaN 代表不可能值, Inf 和 -Inf 代表正无穷和负无穷。

在这里,推荐使用 is.na , is.nan , is.finite , is.infinite 4个函数去处理。

x<-c(2,NA,0/0,5/0)

#判断缺失值

is.na(x)

#判断不可能值

is.nan(x)

#判断无穷值

is.infinite(x)

#判断正常值

is.finite(x)

推荐一个函数: complete.case() 可用来识别矩阵或数据框中没有缺失值的行!

展示出数据中缺失的行 (数据集sleep来自包VIM)

sleep[!complete.cases(sleep),]

判断数据集中有多少缺失

针对复杂的数据集,怎么更好的探索数据缺失情况呢?

mice包 中的 md.pattern() 函数可以生成一个以矩阵或数据框形式展示缺失值模式的表格。

备注:0表示变量的列中没有缺失,1则表示有缺失值。

第一行给出了没有缺失值的数目(共多少行)。

第一列表示各缺失值的模式。

最后一行给出了每个变量的缺失值数目。

最后一列给出了变量的数目(这些变量存在缺失值)。

在这个数据集中,总共有38个数据缺失。

图形化展示缺失数据:

aggr(sleep,prop=F,numbers=T)

matrixplot(sleep)

浅色表示值小,深色表示值大,默认缺失值为红色。

marginmatrix(sleep)

上述变量太多,我们可以选出部分变量展示:

x <- sleep[, 1:5]

x[,c(1,2,4)] <- log10(x[,c(1,2,4)])

marginmatrix(x)

为了更清晰,可以进行成对展示:

marginplot(sleep[c("Gest","Dream")])

在这里(左下角)可以看到,Dream和Gest分别缺失12和4个数据。

左边的红色箱线图展示的是在Gest值缺失的情况下Dream的分布,而蓝色箱线图展示的Gest值不缺失的情况下Dream的分布。同样的,Gest箱线图在底部。

2、缺失值数据的处理

行删除法: 数据集中含有缺失值的行都会被删除,一般假定缺失数据是完全随机产生的,并且缺失值只是很少一部分,对结果不会造成大的影响。

即:要有足够的样本量,并且删除缺失值后不会有大的偏差!

行删除的函数有 na.omit() 和 complete.case()

newdata<-na.omit(sleep)

sum(is.na(newdata))

newdata<-sleep[complete.cases(sleep),]

sum(is.na(newdata))

均值/中位数等填充: 这种方法简单粗暴,如果填充值对结果影响不怎么大,这种方法倒是可以接受,并且有可能会产生令人满意的结果。

方法1:

newdata<-sleep

mean(newdata$Dream,na.rm = T)

newdata[is.na(newdata$Dream),"Dream"]<-1.972

方法2:

Hmisc包更加简单,可以插补均值、中位数等,你也可以插补指定值。

library(Hmisc)

impute(newdata$Dream,mean)

impute(newdata$Dream,median)

impute(newdata$Dream,2)

mice包插补缺失数据: 链式方程多元插值,首先利用mice函数建模再用complete函数生成完整数据。

下图展示mice包的操作过程:

mice():从一个含缺失值的数据框开始,返回一个包含多个完整数据集对象(默认可以模拟参数5个完整的数据集)

with():可依次对每个完整数据集应用统计建模

pool():将with()生成的单独结果整合到一起

library(mice)

newdata<-sleep

data<-mice(newdata,m = 5,method='pmm',maxit=100,seed=1)

在这里,m是默认值5,指插补数据集的数量

插补方法是pmm:预测均值匹配,可以用methods(mice)查看其他方法

maxit指迭代次数,seed指设定种子数(和set.seed同义)

概述插补后的数据:

summary(data)

在这上面可以看到数据集中变量的观测值缺失情况,每个变量的插补方法, VisitSequence 从左至右展示了插补的变量, 预测变量矩阵 (PredictorMatrix)展示了进行插补过程的含有缺失数据的变量,它们利用了数据集中其他变量的信息。(在矩阵中,行代表插补变量,列代表为插补提供信息的变量,1

和0分别表示使用和未使用。)

查看整体插补的数据:

data$imp

查看具体变量的插补数据:

data$imp$Dream

最后,最重要的是生成一个完整的数据集

completedata<-complete(data)

判断还有没有缺失值,如果没有,结果返回FLASE

anyNA(completedata)

针对以上插补结果,我们可以查看原始数据和插补后的数据的分布情况

library(lattice)

xyplot(data,Dream~NonD+Sleep+Span+Gest,pch=21)

图上,插补值是洋红点呈现出的形状,观测值是蓝色点。

densityplot(data)

图上,洋红线是每个插补数据集的数据密度曲线,蓝色是观测值数据的密度曲线。

stripplot(data, pch = 21)

上图中,0代表原始数据,1-5代表5次插补的数据,洋红色的点代表插补值。

下面我们分析对数据拟合一个线性模型:

完整数据:

library(mice)

newdata<-sleep

data<-mice(newdata,m = 5,method='pmm',maxit=100,seed=1)

model<-with(data,lm(Dream~Span+Gest))

pooled<-pool(model)

summary(pooled)

fim指的是各个变量缺失信息的比例,lambda指的是每个变量对缺失数据的贡献大小

缺失数据(在运行中,自动会行删除):

lm.fit <- lm(Dream~Span+Gest, data = sleep,na.action=na.omit)

summary(lm.fit)

完整数据集和缺失数据集进行线性回归后,参数估计和P值基本一直。 缺失值是完全随机产生的 。如果缺失比重比较大的话,就不适合使用行删除法,建议使用多重插补法。

kNN插值法: knnImputation函数使用k近邻方法来填充缺失值。对于需要插值的记录,基于欧氏距离计算k个和它最近的观测。接着将这k个近邻的数据利用距离逆加权算出填充值,最后用该值替代缺失值。

library(DMwR)

newdata<-sleep

knnOutput <- knnImputation(newdata)

anyNA(knnOutput)

head(knnOutput)

>ID <- paste("A","00","q",1:5,sep = "+")

>ID

[1] "A+00+q+1" "A+00+q+2" "A+00+q+3" "A+00+q+4" "A+00+q+5"

>ID <- paste("A","00",1:5,sep = "")

>ID

[1] "A001" "A002" "A003" "A004" "A005"

>age<-c(24,NA,35,19,-20)

>age

[1]  24  NA  35  19 -20

>df1<-data.frame(ID,age)

>df1

    ID age

1 A001  24

2 A002  NA

3 A003  35

4 A004  19

5 A005 -20

>#判别有无缺失值

>is.na(df1)

        ID   age

[1,] FALSE FALSE

[2,] FALSE  TRUE

[3,] FALSE FALSE

[4,] FALSE FALSE

[5,] FALSE FALSE

>#将不合理的值定义为缺失值

>df1$age[df1$age<0] <- NA

>df1

    ID age

1 A001  24

2 A002  NA

3 A003  35

4 A004  19

5 A005  NA

>#替换缺失值

>df1[is.na(df1)]<-mean(df1$age,na.rm = T)#rm是remove的意思,移除na值

>df1

    ID age

1 A001  24

2 A002  26

3 A003  35

4 A004  19

5 A005  26

>#omit函数去除na值

>ID <- paste("A","00",1:5,sep = "")

>age<-c(24,NA,35,19,-20)

>df1<-data.frame(ID,age)

>df1

    ID age

1 A001  24

2 A002  NA

3 A003  35

4 A004  19

5 A005 -20

>df1$age[df1$age<0] <- NA

>df1

    ID age

1 A001  24

2 A002  NA

3 A003  35

4 A004  19

5 A005  NA

>na.omit(df1)#omit会将na值所有行都删除

    ID age

1 A001  24

3 A003  35

4 A004  19

>#判断与转换函数

>a<-c(1,2,3)

>a

[1] 1 2 3

>b<-c("a","b","c“)

+ b

+ d<-c("1","2")

Error: unexpected numeric constant in:

"b

d<-c("1"

>c

  age country

1   1   Chian

2   5   India

>e<-matrix(1:6,2,3)

>e

     [,1] [,2] [,3]

[1,]    1    3    5

[2,]    2    4    6

>e<-matrix(1:6,ncol=2)

>e

     [,1] [,2]

[1,]    1    4

[2,]    2    5

[3,]    3    6

>f<-c(1:10)

>f

 [1]  1  2  3  4  5  6  7  8  9 10

>is.character(b)

[1] FALSE

>is.numeric(a)

[1] TRUE

>is.data.frame(df1)

[1] TRUE

>as.numeric(d)

[1] 1 2

>as.character(a)

[1] "1" "2" "3"

>df1

    ID age

1 A001  24

2 A002  NA

3 A003  35

4 A004  19

5 A005  NA

>as.character(df1)

[1] "1:5"                   "c(24, NA, 35, 19, NA)"

>is.vector(a)

[1] TRUE

>is.matrix(e)

[1] TRUE

>as.matrix(f,nrow=2)

      [,1]

 [1,]    1

 [2,]    2

 [3,]    3

 [4,]    4

 [5,]    5

 [6,]    6

 [7,]    7

 [8,]    8

 [9,]    9

[10,]   10