埋点是网站和APP等产品进行日常改进及数据分析的数据采集基础,根据采集得到的用户行为数据(例如:页面访问路径,点击了哪一个按钮)进行数据分析,从而更加合理的推送跟优化,增强用户体验。现在市面上有很多第三方埋点服务商,百度统计、友盟、growingIO等。
常见的埋点方法包括:
手动埋点:根据业务需求在需要采集数据的地方进行埋点,是比较常见的埋点手段。
可视化埋点:一些事件带有元素唯一标识。通过在后台进行埋点配置,将元素与要采集信息关联起来,然后自动生成埋点代码嵌入到页面中,目前发展比较火的埋点方式,但是技术上的实现跟推广比较困难
无埋点:简单来说就是没有埋点,前端会采集用户所有的行为跟信息,然后后台再对这些信息进行筛选,由于数据量巨大,对服务器的性能要求很高。
网页布点即布局,网页的三种布局:固定布局,流式布局,弹性布局。
固定布局:以px来设置宽度。
流式布局:以百分比来设置宽度!在宽度较小时,行宽会变得非常窄且难阅读。因此我们要给它添加以px或者em为单位的min-width,从而防止布局变得太窄。
弹性布局:相对于字号来设置宽度,以em为单位设置宽度!由于字号增加时整个布局宽度会加大,因此可能比浏览器窗口宽,导致水平滚动条出现。所以,要给它添加一个max-width为100%。
扩展资料:
埋点分析,是网站分析的一种常用的数据采集方法。数据埋点分为初级、中级、高级三种方式。数据埋点是一种良好的私有化部署数据采集方式。
数据埋点分为初级、中级、高级三种方式,分别为:
初级:在产品、服务转化关键点植入统计代码,据其独立ID确保数据采集不重复(如购买按钮点击率);
中级:植入多段代码,追踪用户在平台每个界面上的系列行为,事件之间相互独立(如打开商品详情页——选择商品型号——加入购物车——下订单——购买完成);
高级:联合公司工程、ETL采集分析用户全量行为,建立用户画像,还原用户行为模型,作为产品分析、优化的基础。
参考资料:百度百科-埋点
所谓“埋点”,是数据采集领域(尤其是用户行为数据采集领域)的术语,指的是针对特定用户行为或事件进行捕获、处理和发送的相关技术及其实施过程。埋点的技术实质,是先监听软件应用运行过程中的事件,当需要关注的事件发生时进行判断和捕获,然后获取必要的上下文信息,最后将信息整理后发送至服务器端。所监听的事件,通常由操作系统、浏览器、APP框架等平台提供,也可以在基础事件之上进行触发条件的自定义(如点击某一个特定按钮)。一般情况下,埋点可以通过监测分析工具提供的SDK来进行编程实现。埋点的业务意义显而易见,即帮助定义和获取分析人员真正需要的业务数据及其附带信息。在不同场景下,业务人员关注的信息和角度可能不同。典型的应用场景有面向数字营销领域的分析,以及面向产品运营领域的分析。前者注重来源渠道和广告效果,后者更在意产品本身流程和体验的优化。两者各有侧重,也可以有一些交叉。所以,对于不同的项目和分析目的,应当设计不同的埋点方案。近年来,埋点的方法论上也出现了一些业界新趋势,如“无埋点”技术。所谓“无埋点”,是指不再使用笨拙的采集代码编程来定义行为采集的触发条件和后续行为,而是通过后端配置或前端可视化圈选等方式来完成关键事件的定义和捕获,可以大幅提升埋点工作的效率和易用性。在“无埋点”的场景下,数据监测工具一般倾向于在监测时捕获和发送尽可能多的事件和信息,而在数据处理后端进行触发条件匹配和统计计算等工作,以较好地支持关注点变更和历史数据回溯。当然,即便是“无埋点”技术,也仍然需要部署数据采集基础SDK(又称基础代码),这一点需要注意,容易产生误区。