BP神经网络的原理的BP什么意思

BP神经网络的原理的BP什么意思

人工神经网络有很多模型,但是日前应用最广、基本思想最直观、最容易被理解的是多层前馈神经网络及误差逆传播学习算法(Error Back-Prooaeation),简称为BP网络。在1986年以Rumelhart和McCelland为首的科学
Python580
r语言arma-garch怎样预测

r语言arma-garch怎样预测

原文链接:http:tecdat.cn?p=20015本文将说明单变量和多变量金融时间序列的不同模型,特别是条件均值和条件协方差矩阵、波动率的模型。均值模型本节探讨条件均值模型。iid模型我们从简单的iid模型开始。iid模型
Python100
r语言RMSE函数是哪个程序包里面的

r语言RMSE函数是哪个程序包里面的

你好,帮你谷歌了一下,其中R包‘Metrics’里有这个函数:另外在R包‘hydroGOF’里也有一个类似的计算函数nrmse的函数:。1、RMSE(均方根误差)即标准误差:假如数据在A1:Z1标准方差用函数=STDEV(A1:Z1)方差
Python100
Python 中的函数拟合

Python 中的函数拟合

很多业务场景中,我们希望通过一个特定的函数来拟合业务数据,以此来预测未来数据的变化趋势。(比如用户的留存变化、付费变化等) 本文主要介绍在 Python 中常用的两种曲线拟合方法:多项式拟合 和 自定义函数拟合。 通过多项式拟合,我
Python150
R语言使用nls拟合,为什么总说循环次数大于50

R语言使用nls拟合,为什么总说循环次数大于50

nls的数据源必须有误差。不能精确等于公式返回值(零残差)。循环次数大于50通常是使用 函数精确返回值 作为数据源去拟合函数。必须给y值加上随机误差。z=function(x,a,b){a*sin(x)+b*cos(x)}x=seq(1,1
Python130
回归分析 | R语言 -- 多元线性回归

回归分析 | R语言 -- 多元线性回归

多元线性回归是简单线性回归的扩展,用于基于多个不同的预测变量(x)预测结果变量(y)。 例如,对于三个预测变量(x),y​​的预测由以下等式表示:y = b0 + b1*x1 + b2*x2 + b3*x3回
Python120
R语言保存循环结果

R语言保存循环结果

k &lt- list() for(i in 1:1000) {   k[[i]] &lt- nn2() }newdata=c()                       #1 for(i in
Python150
java 比较大小算法

java 比较大小算法

排序用建议实现comparable类吧 自定义排序比较的参数 否则对象是没法比较大小的 只能比较是否相等class One implements Comparable{int age@Overridepublic int compareTo
Python140
R语言学习之决策树

R语言学习之决策树

R语言学习之决策树决策树最重要的2个问题:决策树的生长问题,决策树的剪枝问题。生长问题又包括了2个子问题:从分组变量的众多取值中选择一个最佳分割点和从众多输入变量中选择当前最佳分组变量;剪枝问题包括2个子问题:预修剪(事先指定树的最大深度,
Python90
r中如何去除残差图里的样本点

r中如何去除残差图里的样本点

r语言中残差与回归值的残差图r语言中残差与回归值的残差图_R语言基础-数据分析及常见数据分析方法weixin_39953102原创关注1点赞·7168人阅读R表达式中常用的符号残差(Residuals)残差是真实值与预测值之间的差,五个分位
Python220
R语言之书笔记:常见的概率分布

R语言之书笔记:常见的概率分布

两种可能结果的离散随机变量概率分布 ,失败是0,成功是1,p是成功的概率。dbinorm() :提供任何有效x的概率质量函数pbinom() :提供累积概率分布,求结果成功q次及q次以下的累积概率,给定分位数值q,输出累
Python270
r语言计算均方误差怎么判断

r语言计算均方误差怎么判断

1、RMSE(均方根误差)即标准误差:假如数据在A1:Z1标准方差用函数=STDEV(A1:Z1)方差用函数=VARA(A1:Z1)2、MRE(平均相对误差)Excel函数统计STDEV(Sd)计算出标准偏差Sd值,然后除以平均数再×
Python190
r语言arma-garch怎样预测

r语言arma-garch怎样预测

原文链接:http:tecdat.cn?p=20015本文将说明单变量和多变量金融时间序列的不同模型,特别是条件均值和条件协方差矩阵、波动率的模型。均值模型本节探讨条件均值模型。iid模型我们从简单的iid模型开始。iid模型
Python150
r语言arma-garch怎样预测

r语言arma-garch怎样预测

原文链接:http:tecdat.cn?p=20015本文将说明单变量和多变量金融时间序列的不同模型,特别是条件均值和条件协方差矩阵、波动率的模型。均值模型本节探讨条件均值模型。iid模型我们从简单的iid模型开始。iid模型
Python140
R语言学习之决策树

R语言学习之决策树

R语言学习之决策树决策树最重要的2个问题:决策树的生长问题,决策树的剪枝问题。生长问题又包括了2个子问题:从分组变量的众多取值中选择一个最佳分割点和从众多输入变量中选择当前最佳分组变量;剪枝问题包括2个子问题:预修剪(事先指定树的最大深度,
Python190