电脑CPU里运算器和控制器的工作原理

电脑教程010

电脑CPU里运算器和控制器的工作原理,第1张

运算器由算术逻辑单元(ALU)、累加器、状态寄存器、通用寄存器组等组成。算术逻辑运算单元(ALU)的基本功能为加、减、乘、除四则运算,与、或、非、异或等逻辑操作,以及移位、求补等操作。计算机运行时,运算器的操作和操作种类由控制器决定。运算器处理的数据来自存储器;处理后的结果数据通常送回存储器,或暂时寄存在运算器中。

控制器按预定目的产生控制信息的仪器或成套装置。自动控制系统实现控制的核心部分。控制器在闭环控制系统中接受来自受控对象的测量信号,按照一定的控制规律产生控制信号推动执行器工作,完成闭环控制,称为调节器;用于开环控制系统的控制器称为顺序控制器,它按照预定的时间顺序或逻辑条件顺序推动执行器实现开环控制。控制器按所用信号形式分为模拟调节器和数字控制器。数字控制器又分为顺序控制器和数字调节器。

控制器是指挥计算机的各个部件按照指令的功能要求协调工作的部件,是计算机的神经中枢和指挥中心,由指令寄存器IR(InstructionRegister)、程序计数器PC(ProgramCounter)和操作控制器0C(OperationController)三个部件组成,对协调整个电脑有序工作极为重要。

指令寄存器:用以保存当前执行或即将执行的指令的一种寄存器。指令内包含有确定操作类型的操作码和指出操作数来源或去向的地址。指令长度随不同计算机而异,指令寄存器的长度也随之而异。计算机的所有操作都是通过分析存放在指令寄存器中的指令后再执行的。指令寄存器的输人端接收来自存储器的指令,指令寄存器的输出端分为两部分。操作码部分送到译码电路进行分析,指出本指令该执行何种类型的操作地址部分送到地址加法器生成有效地址后再送到存储器,作为取数或存数的地址。

存储器可以指主存、高速缓存或寄存器栈等用来保存当前正在执行的一条指令。当执行一条指令时,先把它从内存取到数据寄存器(DR)中,然后再传送至IR。指令划分为操作码和地址码字段,由二进制数字组成。为了执行任何给定的指令,必须对操作码进行测试,以便识别所要求的操作。指令译码器就是做这项工作的。指令寄存器中操作码字段的输出就是指令译码器的输入。操作码一经译码后,即可向操作控制器发出具体操作的特定信号。

程序计数器:指明程序中下一次要执行的指令地址的一种计数器,又称指令计数器。它兼有指令地址寄存器和计数器的功能。当一条指令执行完毕的时候,程序计数器作为指令地址寄存器,其内容必须已经改变成下一条指令的地址,从而使程序得以持续运行。

计算机控制系统是在自动控制技术和计算机技术发展的基础上产生的。若将自动控制系统中的控制器的功能用计算机来实现,就组成了典型的计算机控制系统。计算机控制系统包括硬件组成和软件组成。在计算机控制系统中,需有专门的数字-模拟转换设备和模拟-数字转换设备。由于过程控制一般都是实时控制,有时对计算机速度的要求不高,但要求可靠性高、响应及时。计算机控制系统的工作原理可归纳为以下三个过程:(一)实时数据采集对被控量的瞬时值进行检测,并输入给计算机。(二)实时决策对采集到的表征被控参数的状态量进行分析,并按已定的控制规律,决定下一步的控制过程。(三)实时控制根据决策,适时地对执行机构发出控制信号,完成控制任务。这三个过程不断重复,使整个系统按照一定的品质指标进行工作,并对被控量和设备本身的异常现象及时作出处理。

1、电磁吸盘控制器原理是交流电压380V经变压器降压后,经过整流器整流变成110V直流后经控制装置进入吸盘此时吸盘被充磁,退磁时通入反向电压线路,控制器达到退磁功能。

2、门禁控制器原理是门禁控制器工作在两种模式之下。一种是巡检模式,另一种是识别模式。

在巡检模式下,控制器不断向读卡器发送查询代码,并接收读卡器的回复命令。这种模式会一直保持下去,直至读卡器感应到卡片。当读卡器感应到卡片后,读卡器对控制器的巡检命令产生不同的回复,在这个回复命令中,读卡器将读到的感应卡内码数据传送到门禁控制器,使门禁控制器进入到识别模式。

在门禁控制器的识别模式下,门禁控制器分析感应卡内码,同设备内存储的卡片数据进行比对,并实施后续动作。门禁控制器完成接收数据的动作后,会发送命令回复读卡器,使读卡器恢复状态,同时,门禁控制器重新回到巡检模式。

扩展资料:

基本功能

1、数据缓冲:由于I/O设备的速率较低而CPU和内存的速率却很高,故在控制器中必须设置一缓冲器。在输出时,用此缓冲器暂存由主机高速传来的数据,然后才以I/O设备所具有的速率将缓冲器中的数据传送给I/O设备;在输入时,缓冲器则用于暂存从I/O设备送来的数据,待接收到一批数据后,再将缓冲器中的数据高速地传送给主机。

2、差错控制:设备控制器还兼管对由I/O设备传送来的数据进行差错检测。若发现传送中出现了错误,通常是将差错检测码置位,并向 CPU报告,于是CPU将本次传送来的数据作废,并重新进行一次传送。这样便可保证数据输入的正确性。

3、数据交换:这是指实现CPU与控制器之间、控制器与设备之间的数据交换。对于前者,是通过数据总线,由CPU并行地把数据写入控制器,或从控制器中并行地读出数据;对于后者,是设备将数据输入到控制器,或从控制器传送给设备。为此,在控制器中须设置数据寄存器。

4、状态说明:标识和报告设备的状态控制器应记下设备的状态供CPU了解。例如,仅当该设备处于发送就绪状态时,CPU才能启动控制器从设备中读出数据。为此,在控制器中应设置一状态寄存器,用其中的每一位来反映设备的某一种状态。当CPU将该寄存器的内容读入后,便可了解该设备的状态。

5、接收和识别命令:CPU可以向控制器发送多种不同的命令,设备控制器应能接收并识别这些命令。为此,在控制器中应具有相应的控制寄存器,用来存放接收的命令和参数,并对所接收的命令进行译码。例如,磁盘控制器可以接收CPU发来的Read、Write、Format等15条不同的命令,而且有些命令还带有参数;相应地,在磁盘控制器中有多个寄存器和命令译码器等。

6、地址识别:就像内存中的每一个单元都有一个地址一样,系统中的每一个设备也都有一个地址,而设备控制器又必须能够识别它所控制的每个设备的地址。此外,为使CPU能向(或从)寄存器中写入(或读出)数据,这些寄存器都应具有唯一的地

参考资料:百度百科-控制器