牛顿迭代法

Python021

牛顿迭代法,第1张

牛顿迭代法是一种常用的计算方法,这个大学大三应该学过。

具体为:设r是f(x) = 0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y = f(x)的切线L,L的方程为y = f(x0)+f'(x0)(x-x0),求出L与x轴交点的横坐标 x1 = x0-f(x0)/f'(x0),称x1为r的一次近似值。过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x轴交点的横坐标 x2 = x1-f(x1)/f'(x1),称x2为r的二次近似值。重复以上过程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f'(x(n)),称为r的n+1次近似值,上式称为牛顿迭代公式。

你把这段文字认真仔细慢慢读一遍,把给的方程式写出来,然后照这个在纸上画出图形,就会明白牛顿迭代法的概要了。

你讲的xopint?root?float?这些都是自己定义的函数。float是c语言中定义浮点型变量的写法。

#include <iostream>

#include <math.h>

void main()

{

float f(float)

float xpoint(float,float)

float root(float,float)

float x,x1,x2,f1,f2

do

{

printf("输入x1,x2\n\n")

scanf("%f%f",&x1,&x2)

f1=f(x1)

f2=f(x2)

}while(f1*f2>0)

x=root(x1,x2)

printf("方程在1.5附近的根为:%f\n\n",x)

}

float f(float x)//定义一个f函数,返回值y

{

float y

y=2*x*x*x-4*x*x+3*x-6

return(y)

}

float xpoint(float x1,float x2)//定义一个带返回值的函数即y,也就是求y的函数,main()中调用

{

float y

y=(x1*f(x2)-x2*f(x1))/(f(x2)-f(x1))

return(y)

}

float root(float x1,float x2)//这也是定义一个函数,是求根的函数,利用了上面自己定义的函数

{

float x,y,y1

y1=f(x1)

do

{

x=xpoint(x1,x2)

y=f(x)

if(y*y1>0)

{

y1=y

x1=x

}

else

x2=x

}while(fabs(y)>1e-4)

return(x)

}

建议你看看c 语言教程,上面讲得很详细噢。

设r是的根,选取作为r的初始近似值,过点做曲线的切线L,L的方程为,求出L与x轴交点的横坐标,称x1为r的一次近似值。过点做曲线的切线,并求该切线与x轴交点的横坐标,称为r的二次近似值。重复以上过程,得r的近似值序列,其中,称为r的次近似值,上式称为牛顿迭代公式。

用牛顿迭代法解非线性方程,是把非线性方程线性化的一种近似方法。把在点的某邻域内展开成泰勒级数,取其线性部分(即泰勒展开的前两项),并令其等于0,即,以此作为非线性方程的近似方程,若,则其解为, 这样,得到牛顿迭代法的一个迭代关系式:。

已经证明,如果是连续的,并且待求的零点是孤立的,那么在零点周围存在一个区域,只要初始值位于这个邻近区域内,那么牛顿法必定收敛。 并且,如果不为0, 那么牛顿法将具有平方收敛的性能. 粗略的说,这意味着每迭代一次,牛顿法结果的有效数字将增加一倍。

军人在进攻时常采用交替掩护进攻的方式,若在数轴上的点表示A,B两人的位置,规定在前面的数大于后面的数,则是A>B,B>A交替出现。但现在假设军中有一个胆小鬼,同时大家又都很照顾他,每次冲锋都是让他跟在后面,每当前面的人占据一个新的位置,就把位置交给他,然后其他人再往前占领新的位置。也就是A始终在B的前面,A向前迈进,B跟上,A把自己的位置交给B(即执行B = A),然后A 再前进占领新的位置,B再跟上,直到占领所有的阵地,前进结束。像这种两个数一前一后逐步向某个位置逼近的方法称为迭代法。

迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。

利用迭代算法解决问题,需要做好以下三个方面的工作:

一、确定迭代变量

在可以用迭代算法解决的问题中,至少存在一个可直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。

二、建立迭代关系式

所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。

三、对迭代过程进行控制

在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析得出可用来结束迭代过程的条件。

牛顿法是牛顿在17世纪提出的一种求解方程f(x)=0.多数方程不存在求根公式,从而求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要.

设r是f(x)=0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y=f(x)的切线L,L的方程为y=f(x0)+f'(x0)(x-x0),求出L与x轴交点的横坐标 x1=x0-f(x0)/f'(x0),称x1为r的一次近似值,过点(x1,f(x1))做曲线y=f(x)的切线,并求该切线与x轴的横坐标 x2=x1-f(x1)/f'(x1)称x2为r的二次近似值,重复以上过程,得r的近似值序列{Xn},其中Xn+1=Xn-f(Xn)/f'(Xn),称为r的n+1次近似值.上式称为牛顿迭代公式.