r语言cv.glmnet的lambda.1se怎么计算出来的

Python018

r语言cv.glmnet的lambda.1se怎么计算出来的,第1张

将解释变量的系数加入到Cost Function中,并对其进行最小化,本质上是对过多的参数实施了惩罚。而两种方法的区别在于惩罚函数不同。

但这种微小的区别却使LASSO有很多优良的特质(可以同时选择和缩减参数)。

地理加权回归(GWR)在R里面怎么实现?

121 人关注0 条评论

写回答

查看全部 5 个回答

写回答

叶山Shan Ye

GIS/地质/人文地理/可持续发展

A2A 谢邀,

我和我认识的一些人,刚开始用R做空间分析的时候,也遇到过这个问题。R这种开源的东西,优点是各种包很丰富,缺点是有些包的说明写得很乱,地理加权回归(GWR)的R包其实功能很强大,但大部分说明都不大靠谱。

GWR在R里面可以用好几个不同的包来实现,其中步骤最简单的是spgwr。思路就两步:建立窗口、用窗口扫全局。这其实就是GWR本质上的两步。比如我要在全美国范围内统计某两个(或多个)变量之间的回归关系,我可以做一个全局回归(global regression),但因为这些变量在空间分布上或许会有异质性(heterogeneity),表现在统计结果上就是空间不稳定性(nonstationarity),因此只看全局的统计,可能看不出什么结果来。举个不完全恰当但是很容易领会精神的例子,你比如说,我要分析亚洲范围内,经济发展程度与牛肉销量之间的关系,经济越发达的地方,人们就越吃得起牛肉。可是等我统计到印度的时候,坏了,印度大部分人不吃牛肉,这不是经济状况导致的,这一下就影响了全局统计的参考价值,那怎么办呢?我们可以建立一个窗口(正规说法是带宽窗口,bandwidth window),每次只统计窗口范围内的经济与牛肉销量的关系,然后用这个窗口去扫过全局的范围。等统计到印度的时候,印度内部的各地和印度自己比,吃牛肉的人的比例就不会突然减少,这样就能减少这种空间不稳定性对全局统计的影响。

所以,第一步就是要建立这样一个『窗口』。当然了,首先要安装包,我们要用到的R包有:

library(spgwr)

library(rgdal)

library(sf)

library(spData)

library(sp)

library(lattice)

library(ggplot2)

library(ggthemes)

其中,spgwr是做GWR的包,rgdal是用来读取矢量要素的,sf,sp和spData都是用来处理矢量数据的,别的基本都是画图用。

以下默认你会R和GWR的基本操作。并且,以下只展现方法,不要纠结我的数据和结果,我随便找的数据,这个数据本身没有什么意义,所以做出的统计看起来很『壮观』。

我们先导入数据。这里我用的是美国本土48州各个县(county,也有翻译成郡的)的人口普查数据和农业数据,来源是ESRI Online数据库。为啥用这个数据呢?因为...我电脑里面就存了这么个可以用来做GWR的数据...

我们用rgdal读取数据,然后把它画出来看看

require(rgdal)

usa_agri <- readOGR(dsn = "~/Documents/Spatial", layer = "usa_counties")

plot(usa_agri)

会得到这个东西:

readOGR里面,dsn后面加储存shp的路径(加到文件夹为止),layer后面写shp的文件名(不加.shp)。不喜欢rgdal的同学可以不用,用maptools或者spData等别的处理shp的R包代替。不过如果用maptools,要注意处理一下参考系。

我们看一下这个shp里面的列联表都有什么:

可见,shp里面有3108个县的数据,数据有61种。然后再看data下面有什么:

总之就是各种人口普查的数据,后面截不完图,还有经济、房地产和农业之类的数据。那我们就随便选两个来当变量。我就随便挑了,因变量选AVESIZE12,即2012年各个县农场的平均占地面积。自变量选POP_SQMI,也就是人口密度(每平方英里的人口)。

现在正式建立窗口,调用的是spgwr里面的gwr.sel函数:

bw <- gwr.sel( AVE_SIZE12 ~ POP_SQMI, data = usa_agri, gweight = gwr.Gauss,

verbose = FALSE, method = "cv")

其中~前后分别是因变量和自变量。GWR里因变量只能有1个,但自变量可以选多个,如果需要多个自变量的话,就在代码POP_SQMI之后用+号连接就行。gweight是你的空间加权的函数(随空间距离增大而不断衰减的函数,衰减率由下面要提到的带宽控制),这里用的是比较常用的高斯函数,其余的还有gwr.bisquare等函数可以调用。verbose决定是否汇报制定窗口的过程。method是决定构建带宽窗口模型的方法,这里用的cv指的是cross validation,即交叉验证法,也是最常用的方法,简单说就是把数据分成不同的组,分别用不同的方法来做回归计算,计算完了之后记录下结果,然后打乱重新分组,再回归计算,再看结果,周而复始,最后看哪种计算方法的结果最靠谱,这种方法就是最优解。还有一种很常见的选择最佳拟合模型的方法是AIC optimisation法,把method后面的cv改成aic就可以用。具体AIC optimisation是什么:AIC(赤池信息准则)_百度百科。总之,空间加权函数和带宽窗口构建方法的选择是GWR里面十分重要的步骤。

以上便是固定带宽窗口的示意图。比如我在对佐治亚做GWR,这一轮的regression target是红色的这个县,根据做出来的窗口,圆圈以内的县都要被算为红色县的邻县,其权重根据高斯函数等空间权重函数来赋值,而圆圈以外的县,空间权重都赋为0。

不喜欢固定带宽窗口的同学也可以不用它,而是用符合Tobler地理学第一定律的非固定带宽邻域统计,操作方法是在gwr.sel里面加一个命令adapt = TRUE,这样的情况下,根据你设置的k邻居数,每一轮统计的时候,和本轮对象在k以内相邻的多边形的权重参数会被赋值为0到1之间的一个数,比如下图:

我在对佐治亚做GWR,这一轮的regression target是红色的这个县,那么图上标为1的县就是红色县的1阶邻县,标为2的是2阶(邻县的邻县),标为3的是3阶(邻县的邻县的邻县)。如果用非固定带宽邻域统计,k为3,那么1、2、3都被定义为红色县的邻县,它们的权重从3到1依次增加,会按比例被赋上0和1之间的值,而其它没有标注的县,权重为0。

下一步就是用前一步做出的窗口去扫过全局区域:

gwr_result <- gwr(AVE_SIZE12 ~ POP_SQMI, data = usa_agri, bandwidth = bw,

gweight = gwr.Gauss, hatmatrix = TRUE)

这一步如果数据量大,可能会要跑一阵,跑完之后我们看看结果里面有什么:

Call:

gwr(formula = AVE_SIZE12 ~ POP_SQMI, data = usa_agri, bandwidth = bw,

gweight = gwr.Gauss, hatmatrix = TRUE)

Kernel function: gwr.Gauss

Fixed bandwidth: 205880.3

Summary of GWR coefficient estimates at data points:

Min. 1st Qu. Median 3rd Qu.Max. Global

X.Intercept. 7.3883e+01 2.1081e+02 3.2802e+02 6.6691e+02 8.5705e+03 625.5656

POP_SQMI -8.0085e+01 -4.5983e-01 -1.4704e-01 -7.3703e-02 -2.1859e-03 -0.0426

Number of data points: 3108

Effective number of parameters (residual: 2traceS - traceS'S): 119.6193

Effective degrees of freedom (residual: 2traceS - traceS'S): 2988.381

Sigma (residual: 2traceS - traceS'S): 1048.78

Effective number of parameters (model: traceS): 84.90185

Effective degrees of freedom (model: traceS): 3023.098

Sigma (model: traceS): 1042.741

Sigma (ML): 1028.4

AICc (GWR p. 61, eq 2.33p. 96, eq. 4.21): 52109.55

AIC (GWR p. 96, eq. 4.22): 52017.7

Residual sum of squares: 3287040139

Quasi-global R2: 0.4829366

基本上你做GWR该需要的结果这里都有了。比如窗口大小(Fixed bandwidth)是205880.3,意思是前一步构建的带宽窗口是半径205.88千米的圆。Effective number of parameters显示的是你带宽窗口的大小合不合适。Sigma是残差的标准差,这个值要尽量小。Residual sum of squares(RSS)也是对拟合程度的一个评估值。最重要的是最后那个R2,越靠近1说明统计的拟合度越好。我这里面Sigma很大,R2也不是很大,因为我这里只是呈现方法,用的数据本来就是互不相干、没什么太大意义的,所以不用太纠结。如果你是真正的统计数据要来做GWR,就需要注意这些值了。

然后,我们就可以把每个县的R2画在地图上。首先,前面报告里的这些数据,比如R2,要先自己去生成的GWR结果里面去找,然后自己再算一下每个县的local R2,并把它们赋值到shp里面去:

基于R语言的梯度推进算法介绍

通常来说,我们可以从两个方面来提高一个预测模型的准确性:完善特征工程(feature engineering)或是直接使用Boosting算法。通过大量数据科学竞赛的试炼,我们可以发现人们更钟爱于Boosting算法,这是因为和其他方法相比,它在产生类似的结果时往往更加节约时间。

Boosting算法有很多种,比如梯度推进(Gradient Boosting)、XGBoost、AdaBoost、Gentle Boost等等。每一种算法都有自己不同的理论基础,通过对它们进行运用,算法之间细微的差别也能够被我们所察觉。如果你是一个新手,那么太好了,从现在开始,你可以用大约一周的时间来了解和学习这些知识。

在本文中,笔者将会向你介绍梯度推进算法的基本概念及其复杂性,此外,文中还分享了一个关于如何在R语言中对该算法进行实现的例子。

快问快答

每当谈及Boosting算法,下列两个概念便会频繁的出现:Bagging和Boosting。那么,这两个概念是什么,它们之间究竟有什么区别呢?让我们快速简要地在这里解释一下:

Bagging:对数据进行随机抽样、建立学习算法并且通过简单平均来得到最终概率结论的一种方法。

Boosting:与Bagging类似,但在样本选择方面显得更为聪明一些——在算法进行过程中,对难以进行分类的观测值赋予了越来越大的权重。

我们知道你可能会在这方面产生疑问:什么叫做越来越大?我怎么知道我应该给一个被错分的观测值额外增加多少的权重呢?请保持冷静,我们将在接下来的章节里为你解答。

从一个简单的例子出发

假设你有一个初始的预测模型M需要进行准确度的提高,你知道这个模型目前的准确度为80%(通过任何形式度量),那么接下来你应该怎么做呢?

有一个方法是,我们可以通过一组新的输入变量来构建一个全新的模型,然后对它们进行集成学习。但是,笔者在此要提出一个更简单的建议,如下所示:

Y = M(x) + error

如果我们能够观测到误差项并非白噪声,而是与我们的模型输出(Y)有着相同的相关性,那么我们为什么不通过这个误差项来对模型的准确度进行提升呢?比方说:

error = G(x) + error2

或许,你会发现模型的准确率提高到了一个更高的数字,比如84%。那么下一步让我们对error2进行回归。

error2 = H(x) + error3

然后我们将上述式子组合起来:

Y = M(x) + G(x) + H(x) + error3

这样的结果可能会让模型的准确度更进一步,超过84%。如果我们能像这样为三个学习算法找到一个最佳权重分配,

Y = alpha * M(x) + beta * G(x) + gamma * H(x) + error4

那么,我们可能就构建了一个更好的模型。

上面所述的便是Boosting算法的一个基本原则,当我初次接触到这一理论时,我的脑海中很快地冒出了这两个小问题:

1.我们如何判断回归/分类方程中的误差项是不是白噪声?如果无法判断,我们怎么能用这种算法呢?

2.如果这种算法真的这么强大,我们是不是可以做到接近100%的模型准确度?

接下来,我们将会对这些问题进行解答,但是需要明确的是,Boosting算法的目标对象通常都是一些弱算法,而这些弱算法都不具备只保留白噪声的能力;其次,Boosting有可能导致过度拟合,所以我们必须在合适的点上停止这个算法。

试着想象一个分类问题

请看下图:

从最左侧的图开始看,那条垂直的线表示我们运用算法所构建的分类器,可以发现在这幅图中有3/10的观测值的分类情况是错误的。接着,我们给予那三个被误分的“+”型的观测值更高的权重,使得它们在构建分类器时的地位非常重要。这样一来,垂直线就直接移动到了接近图形右边界的位置。反复这样的过程之后,我们在通过合适的权重组合将所有的模型进行合并。

算法的理论基础

我们该如何分配观测值的权重呢?

通常来说,我们从一个均匀分布假设出发,我们把它称为D1,在这里,n个观测值分别被分配了1/n的权重。

步骤1:假设一个α(t);

步骤2:得到弱分类器h(t);

步骤3:更新总体分布,

其中,

步骤4:再次运用新的总体分布去得到下一个分类器;

觉得步骤3中的数学很可怕吗?让我们来一起击破这种恐惧。首先,我们简单看一下指数里的参数,α表示一种学习率,y是实际的回应值(+1或-1),而h(x)则是分类器所预测的类别。简单来说,如果分类器预测错了,这个指数的幂就变成了1 *α, 反之则是-1*α。也就是说,如果某观测值在上一次预测中被预测错误,那么它对应的权重可能会增加。那么,接下来该做什么呢?

步骤5:不断重复步骤1-步骤4,直到无法发现任何可以改进的地方;

步骤6:对所有在上面步骤中出现过的分类器或是学习算法进行加权平均,权重如下所示:

案例练习

最近我参加了由Analytics Vidhya组织的在线hackathon活动。为了使变量变换变得容易,在complete_data中我们合并了测试集与训练集中的所有数据。我们将数据导入,并且进行抽样和分类。

library(caret)rm(list=ls())setwd("C:Usersts93856DesktopAV")library(Metrics)complete <- read.csv("complete_data.csv", stringsAsFactors = TRUE)train <- complete[complete$Train == 1,]score <- complete[complete$Train != 1,]set.seed(999)ind <- sample(2, nrow(train), replace=T, prob=c(0.60,0.40))trainData<-train[ind==1,]testData <- train[ind==2,]set.seed(999)ind1 <- sample(2, nrow(testData), replace=T, prob=c(0.50,0.50))trainData_ens1<-testData[ind1==1,]testData_ens1 <- testData[ind1==2,]table(testData_ens1$Disbursed)[2]/nrow(testData_ens1)#Response Rate of 9.052%

接下来,就是构建一个梯度推进模型(Gradient Boosting Model)所要做的:

fitControl <- trainControl(method = "repeatedcv", number = 4, repeats = 4)trainData$outcome1 <- ifelse(trainData$Disbursed == 1, "Yes","No")set.seed(33)gbmFit1 <- train(as.factor(outcome1) ~ ., data = trainData[,-26], method = "gbm", trControl = fitControl,verbose = FALSE)gbm_dev <- predict(gbmFit1, trainData,type= "prob")[,2]gbm_ITV1 <- predict(gbmFit1, trainData_ens1,type= "prob")[,2]gbm_ITV2 <- predict(gbmFit1, testData_ens1,type= "prob")[,2]auc(trainData$Disbursed,gbm_dev)auc(trainData_ens1$Disbursed,gbm_ITV1)auc(testData_ens1$Disbursed,gbm_ITV2)

在上述案例中,运行代码后所看到的所有AUC值将会非常接近0.84。我们随时欢迎你对这段代码进行进一步的完善。在这个领域,梯度推进模型(GBM)是最为广泛运用的方法,在未来的文章里,我们可能会对GXBoost等一些更加快捷的Boosting算法进行介绍。

结束语

笔者曾不止一次见识过Boosting算法的迅捷与高效,在Kaggle或是其他平台的竞赛中,它的得分能力从未令人失望,当然了,也许这要取决于你能够把特征工程(feature engineering)做得多好了。

以上是小编为大家分享的关于基于R语言的梯度推进算法介绍的相关内容,更多信息可以关注环球青藤分享更多干货