R语言之ggplot

Python011

R语言之ggplot,第1张

ggplot2的核心理念是将绘图与数据分离,数据相关的绘图与数据无关的绘图分离。按图层作图,保有命令式作图的调整函数,使其更具灵活性,并将常见的统计变换融入到了绘图中。

ggplot的绘图有以下几个特点:第一,有明确的起始(以ggplot函数开始)与终止(一句语句一幅图);其二,图层之间的叠加是靠“+”号实现的,越后面其图层越高。

ggplot2里的所有函数可以分为以下几类:

一个图形对象就是一个包含数据,映射,图层,标度,坐标和分面的列表,外加组件options

ggplot(数据, 映射) geom_xxx(映射, 数据) stat_xxx(映射, 数据)

点(point, text):往往只有x、y指定位置,有shape但没有fill

线(line,vline,abline,hline,stat_function等):一般是基于函数来处理位置

射(segment):特征是指定位置有xend和yend,表示射线方向

面(tile, rect):这类一般有xmax,xmin,ymax,ymin指定位置

棒(boxplot,bin,bar,histogram):往往是二维或一维变量,具有width属性

带(ribbon,smooth):透明是特征是透明的fill

补:包括rug图,误差棒(errorbar,errorbarh)

然后,就是按照你的需要一步步加图层了(使用“+”)。

R语言 高阶可视化绘图系统:ggplot2入门

ggplot2是《The Grammar of Graphics》/《图形的语法》中提出了一套图形语法,将图形元素抽象成可以自由组合的要素,类似Photoshop中的图层累加,ggplot2将指定的元素/映射关系逐层叠加,最终形成所图形。更加深入学习ggplot2,请参考《ggplot2: 数据分析与图形艺术》。

目 录

引言:ggplot2基本要素

1. 数据(Data)和映射(Mapping)

2、几何对象(Geometric)

3、标度(Scale):fill、color、shape

4、统计变换(Stat)

5、坐标系统(Coordinante)

6、分面(Facet)

7、主题(Theme)

附:ggplot2函数速查表

引言:ggplot2基本要素

“+”和“%+%”

数据(data)和映射(mapping):ggplot2的数据(data)必须是一个数据框(dataframe)。

几何对象(geometric):几何对象(geom)代表你在图中实际看到的元素,如点、线、多边形等。

统计变换(statistics):统计变换(stat)是对数据进行的某种汇总。

标度(Scale):标度(scale)的作用是将数据的取值映射到图形空间,例如用颜色、大小或形状来表示不同的取值。

坐标系统(Coordinate):坐标系(coord)描述了数据是如何映射到图形所在的平面的,它同时提供了看图所需的坐标轴和网格线。

图层(Layer):一个图层由4部分组成:数据和图形属性映射;一种统计变换;一种几何对象;一种位置调整方式。

分面(Facet):分面(facet)描述了如何将数据分解为各个子集,以及如何对子集作图并联合进行展示。

其中各要素通过“+”以图层(layer)的方式来粘合构图(可以简单理解为要素/图层叠加符号);另外在ggplot2中,数据集必须为数据框(data.frame)格式,并且可以通过%+%符号调整已有数据集(ggplot2指导文档中明确写出“To override the data, you must use %+%”,也就是覆盖数据必须通过%+%)。以mpg数据集为例。

p1 <- base + geom_smooth() + labs(title="图1") #如图1

#用%+%调整映射关系中的数据

base <- ggplot(mpg, aes(displ, hwy)) + geom_point()

# To override the data, you must use %+%

#也即覆盖原始数据必须通过%+%

p2 <- base %+% subset(mpg, fl == "p") + labs(title="图2") #图2

#第二种调整数据的方法list

# Alternatively, you can add multiple components with a list.

# This can be useful to return from a function.

p3 <- base + list(subset(mpg, fl == "p"), geom_smooth(), labs(title="图3")) #图3

###########一页多图########

#library(grid)

grid.newpage()  ##新建页面

pushViewport(viewport(layout = grid.layout(2,2))) #将页面分成2*2矩阵

vplayout <- function(x,y){ viewport(layout.pos.row = x, layout.pos.col = y)}

print(p1, vp = vplayout(1,1))   #(1,1)的位置画图1

print(p2, vp = vplayout(1,2))   #(1,2)的位置画图2

print(p3, vp = vplayout(2,1))  #(2,1)的位置画图3

1. 数据(Data)和映射(Mapping)

前文已经提及在ggplot2中,数据集必须为数据框(data.frame)格式,并且可以通过%+%符号调整已有数据集。

映射是将一个变量中离散或连续的数据与一个图形属性中以不同的参数来相互关联, 而设定能够将这个变量中所有的数据统一为一个图形属性。aes()函数是ggplot2中的映射函数, 所谓的映射即为数据集中的数据关联到相应的图形属性过程中一种对应关系(注意第10行)。可以发现, 在p2中, 通过aes()指定了横纵坐标分别为wt和hp

>p1 <- ggplot(data = mtcars

>summary(p1)

data: mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb [32x11]

faceting: <ggproto object: Class FacetNull, Facet, gg> 

…… #此部分省略一些内容

>p2 <- ggplot(data = mtcars, mapping = aes(x = wt, y = hp))

>summary(p2)

data: mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb [32x11]

mapping:  x = ~wt, y = ~hp faceting: <ggproto object: Class FacetNull, Facet, gg> 

…… #此部分省略一些内容

另外,在ggplot2中,ggplot()函数声明了全局数据和映射关系,在后续几何对象中如未重新设定数据和映射关系,几何对象将沿用ggplot()中声明的数据与映射关系;当然几何对象可重新设定数据与映射关系,并作用于此几何对象(对比图4和图7),但并不对初始图图层产生影响(对比图4和图6,图6虽对几何图形中重新定义y变量为carb,但纵坐标依然是wt)。

#library(ggolot2)

p <- ggplot(mtcars, aes(x = mpg, y = wt))#设定默认的映射关系

p4 <- p + geom_point() + labs(title="图4")#图4沿用默认的映射关系来绘制散点图

p5 <- p + geom_point(aes(shape = factor(carb))) + labs(title="图5") #图5添加图层中的shape的映射关系

p6 <- p + geom_point(aes(y = carb)) + labs(title="图6")#图6修改默认的y的映射关系, 注意图中y轴名称仍然以默认的wt表示

df <- mtcars[which(mtcars$am==1),]

p7 <- p + geom_point(data = df,aes(x = mpg, y = wt)) + labs(title="图7")

#重新定义point几何对象中的数据与映射关系

###########一页多图########

#library(grid)

grid.newpage()  ##新建页面

pushViewport(viewport(layout = grid.layout(2,2))) #将页面分成2*2矩阵

vplayout <- function(x,y){ viewport(layout.pos.row = x, layout.pos.col = y)}

print(p4, vp = vplayout(1,1))   #(1,1)的位置画图4

print(p5, vp = vplayout(1,2))   #(1,2)的位置画图5

print(p6, vp = vplayout(2,1))  #(2,1)的位置画图6

print(p7, vp = vplayout(2,2))  #(2,2)的位置画图7

2、几何对象(Geometric)

上述例子中,数据映射关系有ggplot()函数设定,使用geom_point()添加一个几何图层,告诉ggplot绘画点图,并将图层属性映射到散点上。

geom_point之外,ggplot2提供了多种几何对象映射,如geom_histogram直方图,geom_bar画柱状图,geom_boxplot画箱式图等等。不同的几何对象,要求的属性会有些不同,这些属性也可以在几何对象映射时提供。

>library(ggplot2)

>ls("package:ggplot2", pattern="^geom_.+")

[1] "geom_abline" "geom_area" "geom_bar" "geom_bin2d" "geom_blank"

[6] "geom_boxplot" "geom_col" "geom_contour" "geom_count" "geom_crossbar"

[11] "geom_curve" "geom_density" "geom_density_2d" "geom_density2d" "geom_dotplot"

[16] "geom_errorbar" "geom_errorbarh" "geom_freqpoly" "geom_hex" "geom_histogram"

[21] "geom_hline" "geom_jitter" "geom_label" "geom_line" "geom_linerange"

[26] "geom_map" "geom_path" "geom_point" "geom_pointrange" "geom_polygon"

[31] "geom_qq" "geom_qq_line" "geom_quantile" "geom_raster" "geom_rect"

[36] "geom_ribbon" "geom_rug" "geom_segment" "geom_sf" "geom_sf_label"

[41] "geom_sf_text" "geom_smooth" "geom_spoke" "geom_step" "geom_text"

[46] "geom_tile" "geom_violin" "geom_vline"

#library(ggplot2)

p <- ggplot(mtcars, aes(x = mpg, y = wt))

p8 <- p + geom_point() + labs(title="图8") #图8散点图

p <- ggplot(mtcars, aes(x = factor(carb), y = wt))

p9 <- p + geom_bar(stat= 'identity') + labs(title="图9") #图9条形图

###########一页多图########

#library(grid)

grid.newpage()  ##新建页面

pushViewport(viewport(layout = grid.layout(1,2))) #将页面分成2*2矩阵

vplayout <- function(x,y){ viewport(layout.pos.row = x, layout.pos.col = y)}

print(p8, vp = vplayout(1,1))   #(1,1)的位置画图8

print(p9, vp = vplayout(1,2))   #(1,2)的位置画图9

3、标度(Scale):fill、color、shape

在对图形属性进行映射之后,使用标度可以控制这些属性的显示方式,比如颜色属性、形状属性等。对比图10和图11,aes中color参数属性可以发现,如color对应变量为factor因子时,图10中图例分组显示不同颜色;但如factor对应的变量为数值,ggplot将其识别为连续变量,数值大小决定颜色深度;对比12和图13,不论是在ggplot函数中定义color还是在几何对象中定义color,其具有相同的效果。

#library(ggplot2)

p <- ggplot(mtcars, aes(x = mpg, y = wt))

p10 <- p + geom_point(aes(color=factor(gear))) + labs(title="图10") #图10

p11 <- p + geom_point(aes(color=gear)) + labs(title="图11") #图11

p <- ggplot(mtcars, aes(x = mpg, y = wt,color = factor(gear)))

p12 <- p + geom_point(aes(shape=factor(cyl))) + labs(title="图12") #图12

p <- ggplot(mtcars, aes(x = mpg, y = wt))

p13 <- p + geom_point(aes(color=factor(gear),shape=factor(cyl))) + labs(title="图13") #图13

###########一页多图#########

library(grid)

grid.newpage()  ##新建页面

pushViewport(viewport(layout = grid.layout(2,2))) #将页面分成2*2矩阵

vplayout <- function(x,y){ viewport(layout.pos.row = x, layout.pos.col = y)}

print(p10, vp = vplayout(1,1))   #(1,1)的位置画图10

print(p11, vp = vplayout(1,2))   #(1,2)的位置画图11

print(p12, vp = vplayout(2,1))  #(2,1)的位置画图12

print(p13, vp = vplayout(2,2))  #(2,2)的位置画图13

4、统计变换(Stat)

统计变换对原始数据进行某种计算,然后在图上显示出来,例如在散点图上加一条回归线。

ggplot(mtcars, aes(x = mpg, y = wt))+geom_point()+scale_y_log10()+stat_smooth(method = "auto", formula = y ~ x)

aes所提供的参数,就通过ggplot提供,而不是提供给geom_point,因为ggplot里的参数,相当于全局变量,geom_point()和stat_smooth()都知道x,y的映射,如果只提供给geom_point(),则相当于是局部变量。ggplot2提供了多种统计变换方式:

>library(ggplot2)

>ls("package:ggplot2",pattern="stat_.+")

[1] "stat_bin" "stat_bin_2d" "stat_bin_hex" "stat_bin2d" "stat_binhex"

[6] "stat_boxplot" "stat_contour" "stat_count" "stat_density" "stat_density_2d"

[11] "stat_density2d" "stat_ecdf" "stat_ellipse" "stat_function" "stat_identity"

[16] "stat_qq" "stat_qq_line" "stat_quantile" "stat_sf" "stat_sf_coordinates"

[21] "stat_smooth" "stat_spoke" "stat_sum" "stat_summary" "stat_summary_2d"

[26] "stat_summary_bin" "stat_summary_hex" "stat_summary2d" "stat_unique" "stat_ydensity"

[31] "update_stat_defaults"

5、坐标系统(Coordinante)

坐标系统控制坐标轴进行变换,例如XY轴翻转,笛卡尔坐标和极坐标转换。

#设置基本映射关系

p <- ggplot(mtcars)

p14 <- p + geom_bar(aes(x = factor(carb)))+coord_flip() + labs(title="图14")  #图14原图

#坐标轴翻转由coord_flip()实现

p15 <- p + geom_bar(aes(x = factor(carb)))+coord_flip() + labs(title="图15")  #图15

#转换成极坐标可以由coord_polar()实现:风玫瑰图(windrose)

p16 <- p + geom_bar(aes(x = factor(1),fill=factor(gear))) + coord_polar() + labs(title="图16")  #图16

#转换成极坐标可以由coord_polar()实现:风玫瑰图(windrose)

p17 <- p + geom_bar(aes(x = factor(carb),fill=factor(gear))) + coord_polar() + labs(title="图17")  #图17

###########一页多图########

#library(grid)

grid.newpage()  ##新建页面

pushViewport(viewport(layout = grid.layout(2,2))) #将页面分成2*2矩阵

vplayout <- function(x,y){ viewport(layout.pos.row = x, layout.pos.col = y)}

print(p14, vp = vplayout(1,1))   #(1,1)的位置画图14

print(p15, vp = vplayout(1,2))   #(1,2)的位置画图15

print(p16, vp = vplayout(2,1))  #(2,1)的位置画图16

print(p17, vp = vplayout(2,2))  #(2,2)的位置画图17

6、分面(Facet)

分面可以让我们按照某种给定的条件,对数据进行分组,然后分别画图。

#facet_grid

mt <- ggplot(mtcars, aes(mpg, wt, colour = factor(cyl))) +  geom_point()

mt + facet_grid(. ~ cyl, scales = "free")

#facet_wrap

ggplot(mpg, aes(displ, hwy)) +  geom_point() +  facet_wrap(~class, scales = "free")

7、主题(Theme)

p1 <- ggplot(mtcars, aes(wt, mpg)) +  geom_point() +  labs(title = "Fuel economy declines as weight increases") + labs(title="图20")  #图20

p17 <- p1 + theme(plot.title = element_text(size = rel(2)))  + labs(title="图17")  #图17

p18 <- p1 + theme(plot.background = element_rect(fill = "green"))  + labs(title="图18")  #图18

p19 <- p1 + theme(panel.background = element_rect(fill = "white", colour = "grey50")) + labs(title="图19")  #图19

###########一页多图########

#library(grid)

grid.newpage()  ##新建页面

pushViewport(viewport(layout = grid.layout(2,2)))#将页面分成2*2矩阵

vplayout <- function(x,y){ viewport(layout.pos.row = x, layout.pos.col = y)}

print(p1, vp = vplayout(1,1))   #(1,1)的位置画图20

print(p17, vp = vplayout(1,2))   #(1,2)的位置画图17

print(p18, vp = vplayout(2,1))  #(2,1)的位置画图18

print(p19, vp = vplayout(2,2))  #(2,2)的位置画图19

Bresenham算法画圆:

Bresenham算法用来画直线非常方便,但上次也说了,Bresenham算法也可以用来显示圆和其他曲线,只需要把直线方程改成圆方程或者其他曲线的方程就行,具体的推理过程就不演示了,大体跟直线的差不多!但由推算的结果可以看出,用Bresenham算法来画圆的确是不大明智的做法,要计算的步骤太多,计算速度比专门的画圆方法慢很多!并且在斜率越大的地方像素的间距就越大,当然我们可以在画某个像素之前先判断一下这一点跟前面一点的连线的斜率,然后在适当的时候交换x、y的坐标,但这样计算量必将增加!

直接给出Bresenham画圆的代码:

#include <gl/glut.h>

#include <math.h>

#include <stdio.h>

void draw_pixel(int ix,int iy)

{

glBegin(GL_POINTS)

glVertex2i(ix,iy)

glEnd()

}

//int inline round(const float a){return int (a+0.5)}

void Bresenham(int x1,int y1,int r,double a,double b,double c)/*圆心在(x1,y1),半径为r的圆*/

{

glColor3f(a,b,c)

int dx=r//int dy=abs(yEnd-y1)

//      int p=2*dy-dx

//      int twoDy=2*dy,twoDyMinusDx=2*dy-2*dx

int x,y,d1,d2

/*     if (x1>xEnd)

{

x=xEndy=yEnd

xEnd=x1

}

else

{

x=x1

y=y1

}

*/

x=x1

y=y1+r

draw_pixel(x1,y1)

draw_pixel(x,y)//起始点装入帧缓存,起始点是圆的最上面一点,然后按顺时针来画

while(x<=x1+dx)

{

d1=y1+sqrt(pow(r,2)-pow(x-x1,2))/* lower */

x++

d2=2*(y1+sqrt(pow(r,2)-pow(x-x1,2)))-2*d1-1/* lower-upper */

if(1)

{

y=d1

draw_pixel(x,y)

draw_pixel(x,2*y1-y)

draw_pixel(2*x1-x,y)

draw_pixel(2*x1-x,2*y1-y)

}

else

{

y++

//p+=twoDyMinusDx

draw_pixel(x,y)

}

}

}

void display()

{

glClear(GL_COLOR_BUFFER_BIT)

Bresenham(250,250,200,0.0,0.0,1.0)

Bresenham(300,250,150,1.0,0.0,0.0)

Bresenham(200,250,150,0.0,1.0,0.0)

//Bresenham(250,300,150,0.8,0.4,0.3)

//Bresenham(250,200,150)

glFlush()

}

void myinit()

{

glClearColor(0.8,1.0,1.0,1.0)

//glColor3f(0.0,0.0,1.0)

glPointSize(1.0)

glMatrixMode(GL_PROJECTION)

glLoadIdentity()

gluOrtho2D(0.0,500.0,0.0,500.0)

}

void main(int argc,char **argv )

{

glutInit(&argc,argv)

glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB)

glutInitWindowSize(500,500)

glutInitWindowPosition(200.0,200.0)

glutCreateWindow("CG_test_Bresenham_Circle example")

glutDisplayFunc(display)

myinit()

glutMainLoop()

}

以下为程序运行效果:

中点画圆:

用光栅画圆的不足在上次已经用实例表示的很明白了,上次画的那个圆怎么都不能算满意,虽然可以通过修改算法来得到改善,但本来计算步骤就已经很多了,交换坐标重新计算将会大大增加计算机的就是负担,为此我们采用另一种更加常用的画圆算法——中点画圆算法,之所以叫做“中点”画圆算法是由于它不是像Bresenham算法那样所绘像素不是(xk+1,yk)就是(xk+1,yk+1),而是根据这两个点的中点来判断是(xk+1,yk)还是(xk+1,yk-1)更接近于圆!

对于给定的半径r和圆心(x0,y0),我们先计算圆心在原点(0,0)的点,然后将其平移到圆心(x0,y0)处即可,跟Bresenham算法一样,我们也可以借助圆的高度对称性来减少计算机的计算步骤,在这里我们可以先计算出八分之一圆的像素点,然后根据对称性绘出其他点。这样可以大大加快画圆的速度!

跟光栅化方法一样,我们还是采用步进的方法来逐点描绘,但这里的决策参数计算方式跟Bresenham不大一样,设决策参数为p,则:

P=x2+y2-r2

对于任一个点(x,y),可以根据p的符号来判断点是在圆内还是圆外还是在圆上,这里不多说,假设我们在(xk,yk)处绘制了一个像素,下一步需要确定的是(xk+1,yk)还是(xk+1,yk-1)更接近于圆,在此代入这两个点的中点来求出决策参数:

Pk=(xk+1)2+(yk -1/2)2-r2

如果Pk<0,则yk上的像素更接近于圆,否则就是yk-1更接近于圆

同理可以推出Pk+1= Pk +2(xk+1)+(yk +12-yk2)-(yk +1-yk)+1

给出一个示例,这个圆比用Bresenham画出来的好看多了:

#include<gl\glut.h>

class screenPt

{

private:

int x,y

public:

screenPt(){ x=y=0}

void setCoords(GLint xCoordValue,GLint yCoordValue)

{

x=xCoordValue

y=yCoordValue

}

GLint getx()const

{

return x

}

GLint gety()const

{

return y

}

void incrementx(){x++}

void decrementy(){y--}

}

void draw_pixel(int xCoord,int yCoord)

{

glBegin(GL_POINTS)

glVertex2i(xCoord,yCoord)

glEnd()

}

void circleMidpoint(GLint xc,GLint yc,GLint radius)

{

screenPt circPt

GLint p=1-radius

circPt.setCoords(0,radius)

void circlePlotPoints(GLint ,GLint, screenPt)

circlePlotPoints(xc,yc,circPt)

while (circPt.getx()<circPt.gety())

{

circPt.incrementx()

if(p<0)

p+=2*circPt.getx()+1

else

{

circPt.decrementy()

p+=2*(circPt.getx()-circPt.gety())+1

}

circlePlotPoints(xc,yc,circPt)

}

}

void circlePlotPoints(GLint xc,GLint yc,screenPt circPt)//描绘八分圆各点

{

draw_pixel(xc+circPt.getx(),yc+circPt.gety())

draw_pixel(xc-circPt.getx(),yc+circPt.gety())

draw_pixel(xc+circPt.getx(),yc-circPt.gety())

draw_pixel(xc-circPt.getx(),yc-circPt.gety())

draw_pixel(xc+circPt.gety(),yc+circPt.getx())

draw_pixel(xc-circPt.gety(),yc+circPt.getx())

draw_pixel(xc+circPt.gety(),yc-circPt.getx())

draw_pixel(xc-circPt.gety(),yc-circPt.getx())

}

void display()

{

//screenPt Pt

glClear(GL_COLOR_BUFFER_BIT)

circleMidpoint(250,250,200)

glFlush()

}

void myinit()

{

glClearColor(0.8,1.0,1.0,1.0)

glColor3f(0.0,0.0,1.0)

glPointSize(1.0)

glMatrixMode(GL_PROJECTION)

glLoadIdentity()

gluOrtho2D(0.0,500.0,0.0,500.0)

}

void main(int argc,char **argv )

{

glutInit(&argc,argv)

glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB)

glutInitWindowSize(500,500)

glutInitWindowPosition(200.0,200.0)

glutCreateWindow("CG_test_中点画圆 example")

glutDisplayFunc(display)

myinit()

glutMainLoop()

}

运行效果: