对于异常值的检测

Python013

对于异常值的检测,第1张

离群点,是一个数据对象,它显著不同于其他数据对象,与其他数据分布有较为显著的不同。有时也称非离群点为“正常数据”,离群点为“异常数据”。

离群点跟噪声数据不一样,噪声是被观测变量的随机误差或方差。一般而言,噪声在数据分析(包括离群点分析)中不是令人感兴趣的,需要在数据预处理中剔除的,减少对后续模型预估的影响,增加精度。

离群点检测是有意义的,因为怀疑产生它们的分布不同于产生其他数据的分布。因此,在离群点检测时,重要的是搞清楚是哪种外力产生的离群点。

常见的异常成因:

通常,在其余数据上做各种假设,并且证明检测到的离群点显著违反了这些假设。如统计学中的假设检验,基于小概率原理,对原假设进行判断。一般检测离群点,是人工进行筛选,剔除不可信的数据,例如对于房屋数据,面积上万,卧室数量过百等情况。而在面对大量的数据时,人工方法耗时耗力,因此,才有如下的方法进行离群点检测。

统计学方法是基于模型的方法,即为数据创建一个模型,并且根据对象拟合模型的情况来评估它们。大部分用于离群点检测的统计学方法都是构建一个概率分布模型,并考虑对象有多大可能符合该模型。

离群点的概率定义:离群点是一个对象,关于数据的概率分布模型,它具有低概率。这种情况的前提是必须知道数据集服从什么分布,如果估计错误就造成了重尾分布。

a. 参数法:

当数据服从正太分布的假设时在正态分布的假定下,u±3σ区域包含99.7%的数据,u±2σ包含95.4%的数据,u±1σ包含68.3%的数据。其区域外的数据视为离群点。

当数据是非正态分布时,可以使用切比雪夫不等式,它对任何分布形状的数据都适用。根据 切比雪夫不等式 ,至少有(1-1/k 2 )的数据落在±k个标准差之内。所以,有以下结论:

计算得到:通过绘制箱线图可以直观地找到离群点,或者通过计算四分位数极差(IQR)定义为Q3-Q1。比Q1小1.5倍的IQR或者比Q3大1.5倍的IQR的任何对象都视为离群点,因为Q1-1.5IQR和Q3+1.5IQR之间的区域包含了99.3%的对象。

涉及两个或多个属性或变量的数据称为多元数据。核心思想是把多元离群点检测任务转换成一元离群点检测问题。

- 卡方统计量的多元离群点检测 :正态分布的假定下,卡方统计量也可以用来捕获多元离群点,对象 ,卡方统计量是: , 是 在第i维上的值, 是所有对象在第i维上的均值,而n是维度。如果对象的卡方统计量很大,则该对象是离群点。

b. 非参数法:

构造直方图

为了构造一个好的直方图,用户必须指定直方图的类型和其他参数(箱数、等宽or等深)。最简单的方法是,如果该对象落入直方图的一个箱中,则该对象被看做正常的,否则被认为是离群点。也可以使用直方图赋予每个对象一个离群点得分,比如对象的离群点得分为该对象落入的箱的容积的倒数。但这个方法很难选择一个较好的直方图参数。

注意

传统的观点都认为孤立点是一个单独的点,然而很多的现实情况是异常事件具有一定的时间和空间的局部性,这种局部性会产生一个小的簇.这时候离群点(孤立点)实际上是一个小簇(图下图的C1和C3)。

一个对象是异常的,如果它远离大部分点。这种方法比统计学方法更一般、更容易使用,因为确定数据集的有意义的邻近性度量比确定它的统计分布更容易。不依赖统计检验,将基于邻近度的离群点看作是那些没有“足够多“邻居的对象。这里的邻居是用 邻近度(距离) 来定义的。最常用的距离是绝对距离(曼哈顿)和欧氏距离等等。

一个对象的离群点得分由到它的k-最近邻的距离给定。离群点得分对k的取值高度敏感。如果k太小,则少量的邻近离群点可能导致离群点较少;如果K太大,则点数少于k的簇中所有的对象可能都成了离群点,导致离群点过多。为了使该方案对于k的选取更具有鲁棒性,可以使用k个最近邻的平均距离。

从基于密度的观点来说,离群点是在低密度区域中的对象。一个对象的离群点得分是该对象周围密度的逆。基于密度的离群点检测与基于邻近度的离群点检测密切相关,因为密度通常用邻近度定义。

定义密度

一种常用的定义密度的方法是,定义密度为到k个最近邻的平均距离的倒数 。如果该距离小,则密度高,反之亦然。

另一种密度定义是使用DBSCAN聚类算法使用的密度定义,即一个对象周围的密度等于该对象指定距离d内对象的个数。 需要小心的选择d,如果d太小,则许多正常点可能具有低密度,从而离群点较多。如果d太大,则许多离群点可能具有与正常点类似的密度(和离群点得分)无法区分。 使用任何密度定义检测离群点具有与基于邻近度的离群点方案类似的特点和局限性。特殊地,当数据包含不同密度的区域时,它们不能正确的识别离群点。

定义相对密度

为了正确的识别这种数据集中的离群点,我们需要与对象邻域相关的密度概念,也就是定义相对密度。常见的有两种方法:

(1)使用基于SNN密度的聚类算法使用的方法;

(2)用点x的密度与它的最近邻y的平均密度之比作为相对密度。使用相对密度的离群点检测( 局部离群点要素LOF技术 ):

一种利用聚类检测离群点的方法是丢弃远离其他簇的小簇。这个方法可以和其他任何聚类技术一起使用,但是需要最小簇大小和小簇与其他簇之间距离的阈值。这种方案对簇个数的选择高度敏感。使用这个方案很难将离群点得分附加到对象上。

一种更系统的方法,首先聚类所有的点,对某个待测点评估它属于某一簇的程度。(基于原型的聚类可用离中心点的距离来评估,对具有目标函数(例如kmeans法时的簇的误差平方和)的聚类技术,该得分反映删除对象后目标函数的改进),如果删去此点能显著地改善此项目标函数,则可以将该点定位为孤立点。

基于聚类的离群点:一个对象是基于聚类的离群点,如果该对象不强属于任何簇。离群点对初始聚类的影响:如果通过聚类检测离群点,则由于离群点影响聚类,存在一个问题:结构是否有效。为了处理该问题,可以使用如下方法:

对象是否被认为是离群点可能依赖于簇的个数(如k很大时的噪声簇)。该问题也没有简单的答案。一种策略是对于不同的簇个数重复该分析。另一种方法是找出大量小簇,其想法是(1)较小的簇倾向于更加凝聚,(2)如果存在大量小簇时一个对象是离群点,则它多半是一个真正的离群点。不利的一面是一组离群点可能形成小簇而逃避检测。

根据已有训练集检测新样本是否异常

异常检测根据原始数据集的不同可分为两类:

novelty detection: 训练集中没有异常样本

outlier detection: 训练集中有异常样本

异常样本:

数量少,比较分散

novelty detection和outlier detection的区别:

Sklearn异常检测模型一览

5.1 奇异点检测(Novelty Detection)

奇异点检测,就是判断待测样本到底是不是在原来数据的概率分布内。概率学上认为,所有的数据都有它的隐藏的分布模式,这种分布模式可以由概率模型来具象化。

5.1 离群点检测(Outlier Detection)

不同与奇异点检测是,现在我们没有一个干净的训练集(训练集中也有噪声样本)。下面介绍的三种离群点检测算法其实也都可以用于奇异点检测。

如果我们认为,可达密度小的目标样本点就是异常点,这样未尝不可。但是,LOF算法更进一步。

LOF可以用来判断经纬度的异常。

使用python进行异常值(outlier)检测实战:KMeans + PCA + IsolationForest + SVM + EllipticEnvelope

文章引用: 数据挖掘:数据清洗——异常值处理

一般异常值的检测方法有基于统计的方法,基于聚类的方法,以及一些专门检测异常值的方法等,下面对这些方法进行相关的介绍。

1. 简单统计

如果使用pandas,我们可以直接使用describe()来观察数据的统计性描述(只是粗略的观察一些统计量),不过统计数据为连续型的,如下:

df.describe()

或者简单使用散点图也能很清晰的观察到异常值的存在。如下所示:

2. 3∂原则

这个原则有个条件:数据需要服从正态分布。在3∂原则下,异常值如超过3倍标准差,那么可以将其视为异常值。正负3∂的概率是99.7%,那么距离平均值3∂之外的值出现的概率为P(|x-u| >3∂) <= 0.003,属于极个别的小概率事件。如果数据不服从正态分布,也可以用远离平均值的多少倍标准差来描述。

红色箭头所指就是异常值。

3. 箱型图

这种方法是利用箱型图的四分位距(IQR)对异常值进行检测,也叫Tukey‘s test。箱型图的定义如下:

四分位距(IQR)就是上四分位与下四分位的差值。而我们通过IQR的1.5倍为标准,规定:超过上四分位+1.5倍IQR距离,或者下四分位-1.5倍IQR距离的点为异常值。下面是Python中的代码实现,主要使用了numpy的percentile方法。

Percentile = np.percentile(df['length'],[0,25,50,75,100])

IQR = Percentile[3] - Percentile[1]

UpLimit = Percentile[3]+ageIQR*1.5

DownLimit = Percentile[1]-ageIQR*1.5

也可以使用seaborn的可视化方法boxplot来实现:

f,ax=plt.subplots(figsize=(10,8))

sns.boxplot(y='length',data=df,ax=ax)

plt.show()

红色箭头所指就是异常值。

以上是常用到的判断异常值的简单方法。下面来介绍一些较为复杂的检测异常值算法,由于涉及内容较多,仅介绍核心思想,感兴趣的朋友可自行深入研究。

4. 基于模型检测

这种方法一般会构建一个概率分布模型,并计算对象符合该模型的概率,把具有低概率的对象视为异常点。如果模型是簇的集合,则异常是不显著属于任何簇的对象;如果模型是回归时,异常是相对远离预测值的对象。

离群点的概率定义:离群点是一个对象,关于数据的概率分布模型,它具有低概率。这种情况的前提是必须知道数据集服从什么分布,如果估计错误就造成了重尾分布。

比如特征工程中的RobustScaler方法,在做数据特征值缩放的时候,它会利用数据特征的分位数分布,将数据根据分位数划分为多段,只取中间段来做缩放,比如只取25%分位数到75%分位数的数据做缩放。这样减小了异常数据的影响。

优缺点:(1)有坚实的统计学理论基础,当存在充分的数据和所用的检验类型的知识时,这些检验可能非常有效;(2)对于多元数据,可用的选择少一些,并且对于高维数据,这些检测可能性很差。

5. 基于近邻度的离群点检测

统计方法是利用数据的分布来观察异常值,一些方法甚至需要一些分布条件,而在实际中数据的分布很难达到一些假设条件,在使用上有一定的局限性。

确定数据集的有意义的邻近性度量比确定它的统计分布更容易。这种方法比统计学方法更一般、更容易使用,因为一个对象的离群点得分由到它的k-最近邻(KNN)的距离给定。

需要注意的是:离群点得分对k的取值高度敏感。如果k太小,则少量的邻近离群点可能导致较低的离群点得分;如果K太大,则点数少于k的簇中所有的对象可能都成了离群点。为了使该方案对于k的选取更具有鲁棒性,可以使用k个最近邻的平均距离。

优缺点:(1)简单;(2)缺点:基于邻近度的方法需要O(m2)时间,大数据集不适用;(3)该方法对参数的选择也是敏感的;(4)不能处理具有不同密度区域的数据集,因为它使用全局阈值,不能考虑这种密度的变化。

5. 基于密度的离群点检测

从基于密度的观点来说,离群点是在低密度区域中的对象。基于密度的离群点检测与基于邻近度的离群点检测密切相关,因为密度通常用邻近度定义。一种常用的定义密度的方法是,定义密度为到k个最近邻的平均距离的倒数。如果该距离小,则密度高,反之亦然。另一种密度定义是使用DBSCAN聚类算法使用的密度定义,即一个对象周围的密度等于该对象指定距离d内对象的个数。

优缺点:(1)给出了对象是离群点的定量度量,并且即使数据具有不同的区域也能够很好的处理;(2)与基于距离的方法一样,这些方法必然具有O(m2)的时间复杂度。对于低维数据使用特定的数据结构可以达到O(mlogm);(3)参数选择是困难的。虽然LOF算法通过观察不同的k值,然后取得最大离群点得分来处理该问题,但是,仍然需要选择这些值的上下界。

6. 基于聚类的方法来做异常点检测

基于聚类的离群点:一个对象是基于聚类的离群点,如果该对象不强属于任何簇,那么该对象属于离群点。

离群点对初始聚类的影响:如果通过聚类检测离群点,则由于离群点影响聚类,存在一个问题:结构是否有效。这也是k-means算法的缺点,对离群点敏感。为了处理该问题,可以使用如下方法:对象聚类,删除离群点,对象再次聚类(这个不能保证产生最优结果)。

优缺点:(1)基于线性和接近线性复杂度(k均值)的聚类技术来发现离群点可能是高度有效的;(2)簇的定义通常是离群点的补,因此可能同时发现簇和离群点;(3)产生的离群点集和它们的得分可能非常依赖所用的簇的个数和数据中离群点的存在性;(4)聚类算法产生的簇的质量对该算法产生的离群点的质量影响非常大。

7. 专门的离群点检测

其实以上说到聚类方法的本意是是无监督分类,并不是为了寻找离群点的,只是恰好它的功能可以实现离群点的检测,算是一个衍生的功能。