R语言的一些矩阵运算

Python023

R语言的一些矩阵运算,第1张

摘自: https://www.cnblogs.com/yupeter007/p/5325575.html

矩阵的存储默认是按列进行存储的

matrix (data = NA, nrow = 1, ncol = 1, byrow =FALSE, dimnames = NULL)

创建一个c(1:12)的三行四列的矩阵,

colnames<-c("c1","c2","c3","c4")

rownames<-c("r1","r2","r3")

x<-matrix(1:12,nrow=3,ncol=4,byrow=TRUE,dimnames=list(rownames,colnames))

x

c1 c2 c3 c4

r1 1 2 3 4

r2 5 6 7 8

r3 9 10 11 12

y<-t(x)

若是针对的是一个向量

y<-(1:10)

装置后得到的是行向量

[1] "matrix"

若要的到列向量则

matrix(rnorm(100),nrow=10)

matrix(2,ncol=n,nrow=m)

4.1创建对角矩阵

diag(x,ncol=n,nrow=m)

若x为矩阵 则diag(x)将会提取矩阵x的对角,则返回的是向量值

返回的是以矩阵对角的对角矩阵

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

n<-ncol

m<-nrow

为矩阵的行和列命名

rownames(x)<-c()

colnames(x)<c()

A为m×n矩阵,c>0,在R中求cA可用符号:“*”,例如:

A为m×n矩阵,B为n×k矩阵,在R中求AB可用符号:“%*%”,例如:

对矩阵求逆

方法一:直接用solve(x)

方法二:加载包MASS

library(MASS)

ginv(matrix)

向量的内积

x<-c(1:5)

y<-c(3:7)

向量的外积

向量、矩阵的外积(叉积)

设x和y是n维向量,则x%o%y表示x与y作外积.

, , 2, 1

[,1] [,2] [,3] [,4]

[1,]28 14 20

[2,]4 10 16 22

[3,]6 12 18 24

, , 1, 2

[,1] [,2] [,3] [,4]

[1,]3 12 21 30

[2,]6 15 24 33

[3,]9 18 27 36

, , 2, 2

[,1] [,2] [,3] [,4]

[1,]4 16 28 40

[2,]8 20 32 44

[3,] 12 24 36 48

outer()是更为强大的外积运算函数,outer(x,y)计算向量x与y的外积,它等价于x %o%y

函数。outer()的一般调用格式为

outer(x,y,fun=”*”)

det(x),求矩阵x的行列式值

qr(x)$rank求x矩阵的秩

解线性方程组和求矩阵的逆矩阵

基于R语言的梯度推进算法介绍

通常来说,我们可以从两个方面来提高一个预测模型的准确性:完善特征工程(feature engineering)或是直接使用Boosting算法。通过大量数据科学竞赛的试炼,我们可以发现人们更钟爱于Boosting算法,这是因为和其他方法相比,它在产生类似的结果时往往更加节约时间。

Boosting算法有很多种,比如梯度推进(Gradient Boosting)、XGBoost、AdaBoost、Gentle Boost等等。每一种算法都有自己不同的理论基础,通过对它们进行运用,算法之间细微的差别也能够被我们所察觉。如果你是一个新手,那么太好了,从现在开始,你可以用大约一周的时间来了解和学习这些知识。

在本文中,笔者将会向你介绍梯度推进算法的基本概念及其复杂性,此外,文中还分享了一个关于如何在R语言中对该算法进行实现的例子。

快问快答

每当谈及Boosting算法,下列两个概念便会频繁的出现:Bagging和Boosting。那么,这两个概念是什么,它们之间究竟有什么区别呢?让我们快速简要地在这里解释一下:

Bagging:对数据进行随机抽样、建立学习算法并且通过简单平均来得到最终概率结论的一种方法。

Boosting:与Bagging类似,但在样本选择方面显得更为聪明一些——在算法进行过程中,对难以进行分类的观测值赋予了越来越大的权重。

我们知道你可能会在这方面产生疑问:什么叫做越来越大?我怎么知道我应该给一个被错分的观测值额外增加多少的权重呢?请保持冷静,我们将在接下来的章节里为你解答。

从一个简单的例子出发

假设你有一个初始的预测模型M需要进行准确度的提高,你知道这个模型目前的准确度为80%(通过任何形式度量),那么接下来你应该怎么做呢?

有一个方法是,我们可以通过一组新的输入变量来构建一个全新的模型,然后对它们进行集成学习。但是,笔者在此要提出一个更简单的建议,如下所示:

Y = M(x) + error

如果我们能够观测到误差项并非白噪声,而是与我们的模型输出(Y)有着相同的相关性,那么我们为什么不通过这个误差项来对模型的准确度进行提升呢?比方说:

error = G(x) + error2

或许,你会发现模型的准确率提高到了一个更高的数字,比如84%。那么下一步让我们对error2进行回归。

error2 = H(x) + error3

然后我们将上述式子组合起来:

Y = M(x) + G(x) + H(x) + error3

这样的结果可能会让模型的准确度更进一步,超过84%。如果我们能像这样为三个学习算法找到一个最佳权重分配,

Y = alpha * M(x) + beta * G(x) + gamma * H(x) + error4

那么,我们可能就构建了一个更好的模型。

上面所述的便是Boosting算法的一个基本原则,当我初次接触到这一理论时,我的脑海中很快地冒出了这两个小问题:

1.我们如何判断回归/分类方程中的误差项是不是白噪声?如果无法判断,我们怎么能用这种算法呢?

2.如果这种算法真的这么强大,我们是不是可以做到接近100%的模型准确度?

接下来,我们将会对这些问题进行解答,但是需要明确的是,Boosting算法的目标对象通常都是一些弱算法,而这些弱算法都不具备只保留白噪声的能力;其次,Boosting有可能导致过度拟合,所以我们必须在合适的点上停止这个算法。

试着想象一个分类问题

请看下图:

从最左侧的图开始看,那条垂直的线表示我们运用算法所构建的分类器,可以发现在这幅图中有3/10的观测值的分类情况是错误的。接着,我们给予那三个被误分的“+”型的观测值更高的权重,使得它们在构建分类器时的地位非常重要。这样一来,垂直线就直接移动到了接近图形右边界的位置。反复这样的过程之后,我们在通过合适的权重组合将所有的模型进行合并。

算法的理论基础

我们该如何分配观测值的权重呢?

通常来说,我们从一个均匀分布假设出发,我们把它称为D1,在这里,n个观测值分别被分配了1/n的权重。

步骤1:假设一个α(t);

步骤2:得到弱分类器h(t);

步骤3:更新总体分布,

其中,

步骤4:再次运用新的总体分布去得到下一个分类器;

觉得步骤3中的数学很可怕吗?让我们来一起击破这种恐惧。首先,我们简单看一下指数里的参数,α表示一种学习率,y是实际的回应值(+1或-1),而h(x)则是分类器所预测的类别。简单来说,如果分类器预测错了,这个指数的幂就变成了1 *α, 反之则是-1*α。也就是说,如果某观测值在上一次预测中被预测错误,那么它对应的权重可能会增加。那么,接下来该做什么呢?

步骤5:不断重复步骤1-步骤4,直到无法发现任何可以改进的地方;

步骤6:对所有在上面步骤中出现过的分类器或是学习算法进行加权平均,权重如下所示:

案例练习

最近我参加了由Analytics Vidhya组织的在线hackathon活动。为了使变量变换变得容易,在complete_data中我们合并了测试集与训练集中的所有数据。我们将数据导入,并且进行抽样和分类。

library(caret)rm(list=ls())setwd("C:Usersts93856DesktopAV")library(Metrics)complete <- read.csv("complete_data.csv", stringsAsFactors = TRUE)train <- complete[complete$Train == 1,]score <- complete[complete$Train != 1,]set.seed(999)ind <- sample(2, nrow(train), replace=T, prob=c(0.60,0.40))trainData<-train[ind==1,]testData <- train[ind==2,]set.seed(999)ind1 <- sample(2, nrow(testData), replace=T, prob=c(0.50,0.50))trainData_ens1<-testData[ind1==1,]testData_ens1 <- testData[ind1==2,]table(testData_ens1$Disbursed)[2]/nrow(testData_ens1)#Response Rate of 9.052%

接下来,就是构建一个梯度推进模型(Gradient Boosting Model)所要做的:

fitControl <- trainControl(method = "repeatedcv", number = 4, repeats = 4)trainData$outcome1 <- ifelse(trainData$Disbursed == 1, "Yes","No")set.seed(33)gbmFit1 <- train(as.factor(outcome1) ~ ., data = trainData[,-26], method = "gbm", trControl = fitControl,verbose = FALSE)gbm_dev <- predict(gbmFit1, trainData,type= "prob")[,2]gbm_ITV1 <- predict(gbmFit1, trainData_ens1,type= "prob")[,2]gbm_ITV2 <- predict(gbmFit1, testData_ens1,type= "prob")[,2]auc(trainData$Disbursed,gbm_dev)auc(trainData_ens1$Disbursed,gbm_ITV1)auc(testData_ens1$Disbursed,gbm_ITV2)

在上述案例中,运行代码后所看到的所有AUC值将会非常接近0.84。我们随时欢迎你对这段代码进行进一步的完善。在这个领域,梯度推进模型(GBM)是最为广泛运用的方法,在未来的文章里,我们可能会对GXBoost等一些更加快捷的Boosting算法进行介绍。

结束语

笔者曾不止一次见识过Boosting算法的迅捷与高效,在Kaggle或是其他平台的竞赛中,它的得分能力从未令人失望,当然了,也许这要取决于你能够把特征工程(feature engineering)做得多好了。

以上是小编为大家分享的关于基于R语言的梯度推进算法介绍的相关内容,更多信息可以关注环球青藤分享更多干货

第一,理解代码的含义。

第二,执行代码。

这里是R进行数据分析的一些代码,希望对你有用。

1.1导入数据

install.packages('xslx')

library(xlsx)

Sys.setlocale("LC_ALL", "zh_cn.utf-8")

a=read.xlsx2('d:/1.xlsx',1,header=F)

head(a)显示前六行

class(a$y)/str(a)查看列/全集数据类型

a$y=as.numeric(a$y)转换数据类型

1.2方差分析(F test)

with(a,tapply(liqi,tan,shapiro.test))正态性检验

library(car)leveneTest(liqi~tan,a)方差齐性检验

q=aov(liqi~tan*chong,a)方差分析(正态型)

summary(q)

TukeyHSD(q)多重比较

1.3卡方测验(Pearson Chisq)

a1=summarySE(a,measurevar='y', groupvars=c('x1','x2'))卡方检验(逻辑型/计数型)

aa=a1$y

aaa=matrix(a2,ncol=2)

aaa= as.table(rbind(c(56,44), c(36,64), c(48,52),c(58,42)))

dimnames(aaa)= list(group=c("不添加抗性","不添加敏感","添加抗性","添加敏感"),effect=c("存活","死亡"))

aaa=xtabs(data=a,~x+y)

chisq.test(a)误差分析(卡方测验,Pearson法)

install.packages("rcompanion")

library(rcompanion)

pairwiseNominalIndependence(a)多重比较

1.4线性模型及其误差分析(Wald Chisq)

q=lm(data=a,y~x1*x2)一般线性模型(正态性)

summary(q)

q=glm(data=a,y~x1*x2,family = gaussian(link='identity'))广义线性模型(正态性)

summary(q)

q=glm(data=a,y~x1*x2,family = binomial(link='logit'))广义线性模型(逻辑型,二项分布)

summary(q)

q=glm(data=a,y~x1*x2,family = poisson(link='log'))广义线性模型(计数型,泊松分布)

summary(q)

install.packages('lmerTest')一般线性混合效应模型(正态性)

library(lmerTest)

install packages(‘lme4’)

library(lme4)

q=lmer(data=a,y~x1*(1|x2))

q=lmer(data=a,y~x1*(1|x2),family = gaussian(link='identity'))广义线性混合效应模型(正态性)

q=glmer(data=a,y~x1*(1|x2),family = binomial(link='logit'))广义线性混合效应模型(逻辑型,二项分布)

q=glmer(data=a,y~x1*(1|x2),family = poisson(link='log'))广义线性混合效应模型(计数型,泊松分布)

summary(q)

install.packages('car')

install.packages('openxlsx')

library(car)

install.packages('nlme')

library(nlme)

Anova(q,test='Chisq')线性模型的误差分析(似然比卡方测验,Wald法)

lsmeans(q,pairwise~chuli,adjust = "tukey")线性模型的多重比较(tukey法)