R语言中 fitted和predict的区别

Python09

R语言中 fitted和predict的区别,第1张

简单的说,fitted是拟合值,predict是预测值:

所做的模型是基于给定样本的值建立的,在这些给定样本x1,x2,...,xn(已知所对应的y值)上做预测就是拟合;

在新样本上xn+1,xn+2,...(y值未知)做预测,就是模型预测。

例如,R in action中的例子:

fit<-lm(weight~height,data=women)

fitted(fit)

predict(fit,newdata=data.frame(height=90))

##将90代入,可以对比下结果。

老师的吐槽大会,乐死我了。hhh

regression,通常指用一个或者多个预测变量,也称自变量或者解释变量,来预测响应变量,也称为因变量、效标变量或者结果变量的方法

存在多个变量

AIC 考虑模型统计拟合度、用来拟合的参数数目

AIC值越小,越好

更多的变量:

图一:是否呈线性关系, 是

图二:是否呈正态分布,一条直线,正态分布

图三:位置与尺寸图,描述同方差性,如果方差不变,水平线周围的点应该是随机分布

图四:残差与杠杆图,对单个数据值的观测,鉴别离群点、高杠杆点、强影响点

模型建好,用predict函数对剩余500个样本进行预测,比较残差值,若预测准确,说明模型可以。

analysis of variance,简称ANOVA,也称为变异数分析。用于两个及两个以上样本均数差别的显著性检验。广义上,方差分析也是回归分析的一种,只不过线性回归的因变量一般是连续型变量。自变量是因子时,研究关注的重点通常会从预测转向不同组之间的差异比较。也就是方差分析。

power analysis,可以帮助在给定置信度的情况下,判断检测到给定效应值所需的样本量。也可以在给定置信度水平情况下,计算在某样本量内能检测到给定效应值的概率

拓展了线性模型的框架,包含了非正态因变量的分析。线性回归、方差分析都是基于正态分布的假设

-泊松回归 ,用来为计数资料和列联表建模的一种回归分析。泊松回归假设因变量是泊松分布,并假设它平均值的对数可被未知参数的线性组合建模

-logistic 回归

通过一系列连续型或者类别型预测变量来预测二值型结果变量是,logistic 回归是一个非常有用的工具。流行病学研究中用的多。

Principal Component Analysis,PCA,探索和简化多变量复杂关系的常用方法。 是一种数据降维技巧。可以将大量相关变量转化为一组很少的不相关变量。这些无关变量成为主成分。主成分是对原始变量重新进行线性组合,将原先众多具有一定相关性的指标,重新组合为一组的心得相互独立的综合指标。

探索性因子分析法 exploratory factor analysis,简称为EFA,是一系列用来发现一组变量的潜在结构的方法。通过找寻一组更小的、潜在的活隐藏的结构来解释已观测到的、显式的变量间的关系

因子分析步骤与PCA一致

啤酒与尿布

多元线性回归 是 简单线性回归 的扩展,用于基于多个不同的预测变量(x)预测结果变量(y)。

例如,对于三个预测变量(x),y​​的预测由以下等式表示: y = b0 + b1*x1 + b2*x2 + b3*x3

回归贝塔系数测量每个预测变量与结果之间的关联。“ b_j”可以解释为“ x_j”每增加一个单位对y的平均影响,同时保持所有其他预测变量不变。

在本节中,依然使用 datarium 包中的 marketing 数据集,我们将建立一个多元回归模型,根据在三种广告媒体(youtube,facebook和报纸)上投入的预算来预测销售。计算公式如下: sales = b0 + b1*youtube + b2*facebook + b3*newspaper

您可以如下计算R中的多个回归模型系数:

请注意,如果您的数据中包含许多预测变量,则可以使用 ~. 以下命令将模型中的所有可用变量简单地包括在内:

从上面的输出中,系数表显示β系数估计值及其显着性水平。列为:

如前所述,您可以使用R函数轻松进行预测 predict() :

在使用模型进行预测之前,您需要评估模型的统计显着性。通过显示模型的统计摘要,可以轻松地进行检查。

显示模型的统计摘要,如下所示:

摘要输出显示6个​​组件,包括:

解释多元回归分析的第一步是在模型摘要的底部检查F统计量和关联的p值。

在我们的示例中,可以看出F统计量的p值<2.2e-16,这是非常重要的。这意味着 至少一个预测变量与结果变量显着相关

要查看哪些预测变量很重要,您可以检查系数表,该表显示了回归beta系数和相关的t统计p值的估计。

对于给定的预测变量,t统计量评估预测变量和结果变量之间是否存在显着关联,即,预测变量的beta系数是否显着不同于零。

可以看出,youtube和facebook广告预算的变化与销售的变化显着相关,而报纸预算的变化与销售却没有显着相关。

对于给定的预测变量,系数(b)可以解释为预测变量增加一个单位,同时保持所有其他预测变量固定的对y的平均影响。

例如,对于固定数量的youtube和报纸广告预算,在Facebook广告上花费额外的1000美元,平均可以使销售额增加大约0.1885 * 1000 = 189个销售单位。

youtube系数表明,在所有其他预测变量保持不变的情况下,youtube广告预算每增加1000美元,我们平均可以预期增加0.045 * 1000 = 45个销售单位。

我们发现报纸在多元回归模型中并不重要。这意味着,对于固定数量的youtube和报纸广告预算,报纸广告预算的变化不会显着影响销售单位。

由于报纸变量不重要,因此可以 将其从模型中删除 ,以提高模型精度:

最后,我们的模型公式可以写成如下:。 sales = 3.43+ 0.045*youtube + 0.187*facebook

一旦确定至少一个预测变量与结果显着相关,就应该通过检查模型对数据的拟合程度来继续诊断。此过程也称为拟合优度

可以使用以下三个数量来评估线性回归拟合的整体质量,这些数量显示在模型摘要中:

与预测误差相对应的RSE(或模型 sigma )大致代表模型观察到的结果值和预测值之间的平均差。RSE越低,模型就越适合我们的数据。

将RSE除以结果变量的平均值将为您提供预测误差率,该误差率应尽可能小。

在我们的示例中,仅使用youtube和facebook预测变量,RSE = 2.11,这意味着观察到的销售值与预测值的平均偏差约为2.11个单位。

这对应于2.11 / mean(train.data $ sales)= 2.11 / 16.77 = 13%的错误率,这很低。

R平方(R2)的范围是0到1,代表结果变量中的变化比例,可以用模型预测变量来解释。

对于简单的线性回归,R2是结果与预测变量之间的皮尔森相关系数的平方。在多元线性回归中,R2表示观察到的结果值与预测值之间的相关系数。

R2衡量模型拟合数据的程度。R2越高,模型越好。然而,R2的一个问题是,即使将更多变量添加到模型中,R2总是会增加,即使这些变量与结果之间的关联性很小(James等,2014)。解决方案是通过考虑预测变量的数量来调整R2。

摘要输出中“已调整的R平方”值中的调整是对预测模型中包含的x变量数量的校正。

因此,您应该主要考虑调整后的R平方,对于更多数量的预测变量,它是受罚的R2。

在我们的示例中,调整后的R2为0.88,这很好。

回想一下,F统计量给出了模型的整体重要性。它评估至少一个预测变量是否具有非零系数。

在简单的线性回归中,此检验并不是真正有趣的事情,因为它只是复制了系数表中可用的t检验给出的信息。

一旦我们开始在多元线性回归中使用多个预测变量,F统计量就变得更加重要。

大的F统计量将对应于统计上显着的p值(p <0.05)。在我们的示例中,F统计量644产生的p值为1.46e-42,这是非常重要的。

我们将使用测试数据进行预测,以评估回归模型的性能。

步骤如下:

从上面的输出中,R2为 0.9281111 ,这意味着观察到的结果值与预测的结果值高度相关,这非常好。

预测误差RMSE为 1.612069 ,表示误差率为 1.612069 / mean(testData $ sales) = 1.612069/ 15.567 = 10.35 % ,这很好。

本章介绍了线性回归的基础,并提供了R中用于计算简单和多个线性回归模型的实例。我们还描述了如何评估模型的性能以进行预测。